Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2020
MCQ (Single Correct Answer)
+2
-0.67
Let A and B be two n$$ \times $$n matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements,

I. rank(AB) = rank(A) rank(B)
II. det(AB) = det(A) det(B)
III. rank(A + B) $$ \le $$ rank(A) + rank(B)
IV. det(A + B) $$ \le $$ det(A) + det(B)

Which of the above statements are TRUE?
A
I and II only
B
II and III only
C
I and IV only
D
III and IV only
2
GATE CSE 2019
Numerical
+2
-0

Consider the following matrix :

$$ R=\left[\begin{array}{cccc} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{array}\right] $$

The absolute value of the product of Eigen values of $R$ is ___________.

Your input ____
3
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is a closed form expression for the generating function of the sequence $$\left\{ {{a_n}} \right\},$$ where $${a_n} = 2n + 3$$ for all $$n = 0,1,2,....?$$
A
$${3 \over {{{\left( {1 - x} \right)}^2}}}$$
B
$${{3x} \over {{{\left( {1 - x} \right)}^2}}}$$
C
$${\left( {1 - x} \right)}$$
D
$${{3 - x} \over {{{\left( {1 - x} \right)}^2}}}$$
4
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Consider a matrix P whose only eigenvectors are the multiples of $$\left[ {\matrix{ 1 \cr 4 \cr } } \right].$$

Consider the following statements.

$$\left( {\rm I} \right)$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$P$$ does not have an inverse
$$\left( {\rm II} \right)$$ $$\,\,\,\,\,\,\,\,\,\,\,$$ $$P$$ has a repeated eigenvalue
$$\left( {\rm III} \right)$$ $$\,\,\,\,\,\,\,\,\,$$ $$P$$ cannot be diagonalized

Which one of the following options is correct?

A
Only $${\rm I}$$ and $${\rm III}$$ are necessarily true
B
Only $${\rm II}$$ is necessarily true
C
Only $${\rm I}$$ and $${\rm II}$$ are necessarily true
D
Only $${\rm II}$$ and $${\rm III}$$ are necessarily true
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization