Theory of Computation
Finite Automata and Regular Language
Marks 1Marks 2Marks 5
Push Down Automata and Context Free Language
Marks 1Marks 2
Undecidability
Marks 1Marks 2
Recursively Enumerable Language and Turing Machine
Marks 1Marks 2
1
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
Let $$w$$ be any string of length $$n$$ in $${\left\{ {0,1} \right\}^ * }$$. Let $$L$$ be the set of all substrings of $$w.$$ What is the minimum number of states in a non-deterministic finite automation that accepts $$L$$?
A
$$n-1$$
B
$$n$$
C
$$n+1$$
D
$${2^{n + 1}}$$
2
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
Let $$L = \left\{ {w \in {{\left( {0 + 1} \right)}^ * }\left| {\,w} \right.} \right.$$ has even number of $$\,\left. {1's} \right\},$$ i.e $$L$$ is the set of all bit strings with even number of $$1's.$$ which one of rhe regular expression below represents $$L.$$
A
$$\left( {{0^ * }{{10}^ * }1} \right){}^ * $$
B
$${0^ * }\left( {{{10}^ * }{{10}^ * }} \right){}^ * $$
C
$${0^ * }\left( {{{10}^ * }1} \right){}^ * {0^ * }$$
D
$${0^ * }\,\,1\left( {{{10}^ * }1} \right){}^ * {10^ * }$$
3
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
$$L = {L_1} \cap {L_2}$$ where $${L_1}$$ and $${L_2}$$ are languages defined as follows.
$${L_1} = \left\{ {{a^m}{b^m}\,c\,{a^n}{b^n}\left| {m,n \ge 0} \right.} \right\}$$
$${L_2} = \left\{ {{a^i}{b^i}{c^k}\left| {i,j,k \ge 0} \right.} \right\}$$ Then $$L$$ is
A
Not recursive
B
Regular
C
Context free but not regular
D
Recursively enumerable but not context free
4
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
GATE CSE 2009 Theory of Computation - Finite Automata and Regular Language Question 61 English

The above $$DFA$$ accepts the set of all strings over $$\left\{ {0,\,\,1} \right\}$$ that

A
Begin either with $$0$$ or $$1$$
B
End with $$0$$
C
End with $$00.$$
D
Contain the substring $$00.$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization