Theory of Computation
Finite Automata and Regular Language
Marks 1Marks 2Marks 5
Push Down Automata and Context Free Language
Marks 1Marks 2
Undecidability
Marks 1Marks 2
Recursively Enumerable Language and Turing Machine
Marks 1Marks 2
1
GATE CSE 2015 Set 2
Numerical
+2
-0
The number of states in the minimal deterministic finite automaton corresponding to the regular expression $${\left( {0 + 1} \right)^{\,\, * }}\left( {10} \right)$$ is ________________.
Your input ____
2
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which of the following languages is/are regular?

$${L_1}:\left\{ {wx{w^R}|w,x\, \in \left\{ {a,b} \right\}{}^ * } \right.$$ and $$\left. {\left| w \right|,\left| x \right| > 0} \right\},\,{w^R}$$ is the reverse of string $$w$$
$${L_2}:\left\{ {{a^n}{b^m}\left| {m \ne n} \right.} \right.$$ and $$m,n \ge \left. 0 \right\}$$
$${L_3}:\left\{ {{a^p}{b^q}{c^r}\left| {p,q,r \ge 0} \right.} \right\}$$

A
$${L_1}$$ and $${L_3}$$ only
B
$${L_2}$$ only
C
$${L_2}$$ and $${L_3}$$ only
D
$${L_3}$$ only
3
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider the alphabet $$\sum { = \left\{ {0,1} \right\},} $$ the null/empty string $$\lambda $$ and the sets of strings $${X_0},\,{X_1},$$ and $${X_2}$$ generated by the corresponding non-terminals of a regular grammar. $${X_0},\,\,{X_1},\,$$ and $${X_2}$$ are related as follows. $$$\eqalign{ & {X_0} = 1\,X{}_1 \cr & {X_1} = 0{X_1} + 1\,{X_2} \cr & {X_2} = 0\,{X_1} + \left\{ \lambda \right\} \cr} $$$
Which one of the following choices precisely represents the strings in $${X_0}$$?
A
$$10\left( {{0^ * } + {{\left( {10} \right)}^ * }} \right)1$$
B
$$10\left( {{0^ * } + \left( {10} \right){}^ * } \right){}^ * 1$$
C
$$1\left( {0 + 10} \right){}^ * 1$$
D
$$10\left( {0 + 10} \right){}^ * 1 + 110\left( {0 + 10} \right){}^ * 1$$
4
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider the NPDA $$\left\langle {Q = \left\{ {{q_0},{q_1},{q_2}} \right\}} \right.,$$ $$\Sigma = \left \{ 0, 1 \right \},$$ $$\Gamma = \left \{ 0, 1, \perp \right \},$$ $$\delta, q_{0}, \perp,$$ $$\left. {F = \left\{ {{q_2}} \right\}} \right\rangle $$ , where (as per usual convention) $$Q$$ is the set of states, $$\Sigma$$ is the input alphabet, $$\Gamma$$ is the stack alphabet, $$\delta $$ is the state transition function q0 is the initial state, $$\perp$$ is the initial stack symbol, and F is the set of accepting states. The state transition is as follows: GATE CSE 2015 Set 1 Theory of Computation - Finite Automata and Regular Language Question 42 English

Which one of the following sequences must follow the string 101100 so that the overall string is accepted by the automaton?

A
10110
B
10010
C
01010
D
01001
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization