Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Let R be a non-emply relation on a collection of sets defined by $${A^R}\,B $$ if and only if $$A\, \cap \,B\, = \,\phi $$. Then, (pick the true statement)
A
R is reflexive and transitive
B
R is symmetric and not transitive
C
R is an equivalence relation
D
R is not reflexive and not symmetric
2
GATE CSE 1995
MCQ (Single Correct Answer)
+2
-0.6
Let A be the set of all nonsingular matrices over real numbers and let * be the matrix multiplication operator. Then
A
A is closed under * but $$ < A,\,* > $$ is not a semigroup.
B
$$ < A,\,* > $$ is a semigroup but not a monoid.
C
$$ < A,\,* > $$ is a monoid but not a group.
D
$$ < A,\,* > $$ is a group but not an abelian group
3
GATE CSE 1994
MCQ (Single Correct Answer)
+2
-0.6
Some group (G, o) is known to be abelian. Then, which one of the following is true for G?
A
$$g = {g^{ - 1}}\,$$ for every $$g\, \in \,G$$.
B
$$g = {g^{ 2}}\,$$ for every $$g\, \in \,G$$.
C
$${(goh)^2} = \,{g^2}\,o\,\,{h^2}$$ for every g, $$h\, \in \,G$$.
D
G is of finite order.
4
GATE CSE 1989
Fill in the Blanks
+2
-0
The transitive closure of the relation
$$\left\{ {\left( {1,2} \right)\left( {2,3} \right)\left( {3,4} \right)\left( {5,4} \right)} \right\}$$
on the set $$A = \left\{ {1,2,3,4,5} \right\}$$ is ________ .
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization