Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the set of (column) vectors defined by $$X = \,\{ \,x\, \in \,{R^3}\,\left| {{x_1}\, + \,{x_2}\, + \,{x_3} = 0} \right.$$, where $${x^T} = \,{[{x_1}\, + \,{x_2}\, + \,{x_3}]^T}\} .$$ Which of the following is TRUE?
A
$$\left\{ {{{\left[ {1,\, - 1,\,0} \right]}^T},\,{{\left[ {1,\,\,0 ,- 1,\,} \right]}^T}} \right\}$$ is a basis for the subspace X.
B
$$\left\{ {{{\left[ {1,\, - 1,\,0} \right]}^T},\,{{\left[ {1,\,\,0,\, - 1,\,} \right]}^T}} \right\}$$ is a linearly independent set, but it does not span X and therefore is not a basis of X.
C
X is not a subspace of $${R^3}$$.
D
None of the above.
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
How many different non-isomorphic Abelian groups of order 4 are there?
A
2
B
3
C
4
D
5
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Let E, F and G be finite sets.
Let $$X = \,\left( {E\, \cap \,F\,} \right)\, - \,\left( {F\, \cap \,G\,} \right)$$
and $$Y = \,\left( {E\, - \left( {E\, \cap \,G} \right)} \right)\, - \,\left( {E\, - \,F\,} \right)$$. Which one of the following is true?
A
$$X\, \subset \,Y$$
B
$$X\, \supset \,Y$$
C
$$X\, = \,Y$$
D
$$X\, - \,Y\, \ne \,\emptyset \,\,and\,\,X\, - \,Y\, \ne \,\emptyset \,\,$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Given a set of elements N = {1, 2, ....., n} and two arbitrary subsets $$A\, \subseteq \,N\,$$ and $$B\, \subseteq \,N\,$$, how many of the n! permutations $$\pi $$ from N to N satisfy $$\min \,\left( {\pi \,\left( A \right)} \right) = \min \,\left( {\pi \,\left( B \right)} \right)$$, where min (S) is the smallest integer in the set of integers S, and $${\pi \,\left( S \right)}$$ is the set of integers obtained by applying permutation $${\pi}$$ to each element of S?
A
$$\left( {n - \left| {A\, \cup \,B} \right|} \right)\,\left| A \right|\,\left| B \right|$$
B
$$\left( {{{\left| A \right|}^2} + {{\left| B \right|}^2}} \right)\,{n^2}$$
C
$$n!{{\left| {A\, \cap \,B} \right|} \over {\left| {A\, \cup B} \right|}}$$
D
$$\,{{{{\left| {A\, \cap \,B} \right|}^2}} \over {\left( {\matrix{ n \cr {\left| {A\, \cup \,B} \right|} \cr } } \right)}}$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization