Theory of Computation
Finite Automata and Regular Language
Marks 1Marks 2Marks 5
Push Down Automata and Context Free Language
Marks 1Marks 2
Undecidability
Marks 1Marks 2
Recursively Enumerable Language and Turing Machine
Marks 1Marks 2
1
GATE CSE 2001
MCQ (Single Correct Answer)
+2
-0.6
Consider the following languages:
$${L_1} = \left\{ {w\,w\left| {w \in {{\left\{ {a,\,b} \right\}}^ * }} \right.} \right\}$$
$${L_2} = \left\{ {w\,{w^R}\left| {w \in {{\left\{ {a,\,b} \right\}}^ * },} \right.{w^R}\,\,} \right.$$ is the reverse of $$\left. w \right\}$$
$${L_3} = \left\{ {{0^{2i}}\left| {i\,\,} \right.} \right.$$ is an integer$$\left. \, \right\}$$
$${L_4} = \left\{ {{0^{{i^2}}}\left| {i\,\,} \right.} \right.$$ is an integer$$\left. \, \right\}$$

Which of the languages are regular?

A
Only $${L_1}$$ and $${L_2}$$
B
Only $${L_2},$$ $${L_3}$$ and $${L_4}$$
C
Only $${L_3}$$ and $${L_4}$$
D
Only $${L_3}$$
2
GATE CSE 2000
MCQ (Single Correct Answer)
+2
-0.6
What can be said about a regular language $$L$$ over $$\left\{ a \right\}$$ whose minimal finite state automation has two states?
A
Must be $$\left\{ {{a^n}\left| n \right.\,\,} \right.$$ is odd $$\left. \, \right\}$$
B
Must be $$\left\{ {{a^n}\left| n \right.\,\,} \right.$$ is even $$\left. \, \right\}$$
C
Must be $$\left\{ {{a^n}\left| {n \ge } \right.\,\,} \right.0\left. \, \right\}$$
D
Either $$L$$ must be $$\left\{ {{a^n}\left| n \right.\,\,} \right.$$ is odd$$\left. \, \right\}\,\,$$ or $$L$$ must be $$\left\{ {{a^n}\left| n \right.} \right.$$ is even$$\left. \, \right\}$$
3
GATE CSE 1998
MCQ (Single Correct Answer)
+2
-0.6
Let $$L$$ be the set of all binary strings whose last two symbols are the same. The number of states in the minimum state deterministic finite-state automaton accepting $$L$$ is
A
$$2$$
B
$$5$$
C
$$8$$
D
$$3$$
4
GATE CSE 1997
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following regular expressions over $$\left\{ {0,\,\,1} \right\}$$ denotes the set of all strings not containing $$100$$ as substring?
A
$${0^ * }{\left( {1 + 0} \right)^ * }$$
B
$${0^ * }\,\,{1010^ * }$$
C
$${0^ * }\,\,{1^ * }\,\,{01^ * }$$
D
$${0^ * }{\left( {10 + 1} \right)^ * }$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization