Algorithms
Complexity Analysis and Asymptotic Notations
Marks 1Marks 2
Searching and Sorting
Marks 1Marks 2
Divide and Conquer Method
Marks 1Marks 2
Greedy Method
Marks 1Marks 2
P and NP Concepts
Marks 1Marks 2
Dynamic Programming
Marks 1Marks 2
1
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
An undirected graph G(V, E) contains n ( n > 2 ) nodes named v1 , v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i – j| <= 2. Each edge (vi, vj ) is assigned a weight i + j. A sample graph with n = 4 is shown below. GATE CSE 2011 Algorithms - Greedy Method Question 24 English What will be the cost of the minimum spanning tree (MST) of such a graph with n nodes?
A
$${1 \over {12}}(11{n^2} - 5n)$$
B
$${n^2}{\rm{ - }}\,n + 1$$
C
6n – 11
D
2n + 1
2
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
An undirected graph G(V, E) contains n ( n > 2 ) nodes named v1 , v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i – j| <= 2. Each edge (vi, vj ) is assigned a weight i + j. A sample graph with n = 4 is shown below. GATE CSE 2011 Algorithms - Greedy Method Question 23 English The length of the path from v5 to v6 in the MST of previous question with n = 10 is
A
11
B
25
C
31
D
41
3
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a complete undirected graph with vertex set {0, 1, 2, 3, 4}. Entry W(ij) in the matrix W below is the weight of the edge {i, j}. $$$w = \left( {\matrix{ 0 & 1 & 8 & 1 & 4 \cr 1 & 0 & {12} & 4 & 9 \cr 8 & {12} & 0 & 7 & 3 \cr 1 & 4 & 7 & 0 & 2 \cr 4 & 9 & 3 & 2 & 0 \cr } } \right)$$$ What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T?
A
7
B
8
C
9
D
10
4
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a complete undirected graph with vertex set {0, 1, 2, 3, 4}. Entry W(ij) in the matrix W below is the weight of the edge {i, j}. $$$w = \left( {\matrix{ 0 & 1 & 8 & 1 & 4 \cr 1 & 0 & {12} & 4 & 9 \cr 8 & {12} & 0 & 7 & 3 \cr 1 & 4 & 7 & 0 & 2 \cr 4 & 9 & 3 & 2 & 0 \cr } } \right)$$$ What is the minimum possible weight of a path P from vertex 1 to vertex 2 in this graph such that P contains at most 3 edges?
A
7
B
8
C
9
D
10
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization