Differential Equations
Practice Questions
Marks 1
1

For the differential equation given below, which one of the following options is correct?

$$ \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0,0 \leq x \leq 1,0 \leq y \leq 1 $$

GATE ME 2025
2

Solution of ∇2T = 0 in a square domain (0 < x < 1 and 0 < y < 1) with boundary conditions:

T(x, 0) = x; T(0, y) = y; T(x, 1) = 1 + x; T(1, y) = 1 + y is

GATE ME 2022 Set 1
3
The differential equation $$\,{{{d^2}y} \over {d{x^2}}} + 16y = 0$$ for $$y(x)$$ with the two boundary conditions $${\left. {{{dy} \over {dx}}} \right|_{x = 0}} = 1$$ and $${\left. {{{dy} \over {dx}}} \right|_{x = {\pi \over 2}}} = - 1$$ has
GATE ME 2017 Set 1
4
Consider the following partial differential equation for $$u(x,y)$$ with the constant $$c>1:$$ $$\,{{\partial u} \over {\partial y}} + c{{\partial u} \over {dx}} = 0\,\,$$ solution of this equation is
GATE ME 2017 Set 1
5
Consider the following differential equation $${{dy} \over {dt}} = - 5y;$$ initial condition: $$y=2$$ at $$t=0.$$
The value of $$y$$ at $$t=3$$ is
GATE ME 2015 Set 2
6
Find the solution of $${{{d^2}y} \over {d{x^2}}} = y$$ which passes through origin and the point $$\left( {ln2,{3 \over 4}} \right)$$
GATE ME 2015 Set 1
7
The solution of the initial value problem $$\,\,{{dy} \over {dx}} = - 2xy;y\left( 0 \right) = 2\,\,\,$$ is
GATE ME 2014 Set 4
8
The partial differential equation $$\,\,{{\partial u} \over {\partial t}} + u{{\partial u} \over {\partial x}} = {{{\partial ^2}u} \over {\partial {x^2}}}\,\,\,$$ is a
GATE ME 2013
9
Consider the differential equation $${{dy} \over {dx}} = \left( {1 + {y^2}} \right)x\,\,.$$ The general solution with constant $$'C'$$ is
GATE ME 2011
10
The blasius equation $$\,{{{d^3}f} \over {d{\eta ^3}}} + {f \over 2}\,{{{d^2}f} \over {d{\eta ^2}}} = 0\,\,\,\,$$ is a
GATE ME 2010
11
The solution of $$x{{dy} \over {dx}} + y = {x^4}$$ with condition $$y\left( 1 \right) = {6 \over 5}$$
GATE ME 2009
12
Given that $$\mathop x\limits^{ \bullet \bullet } + 3x = 0$$ and $$x\left( 0 \right) = 1,\,\,\mathop x\limits^ \bullet \left( 0 \right) = 1,$$ What is $$x(1)$$ ________.
GATE ME 2008
13
The solution of $${{d\,y} \over {d\,x}} = {y^2}$$ with initial value $$y(0)=1$$ is bounded in the interval is
GATE ME 2007
14
The partial differential equation $$\,\,{{{\partial ^2}\phi } \over {\partial {x^2}}} + {{{\partial ^2}\phi } \over {\partial {y^2}}} + {{\partial \phi } \over {\partial x}} + {{\partial \phi } \over {\partial y}} = 0\,\,\,\,$$ has
GATE ME 2007
15
For $$\,\,\,{{{d^2}y} \over {d{x^2}}} + 4{{dy} \over {dx}} + 3y = 3{e^{2x}},\,\,$$ the particular integral is
GATE ME 2006
16
The solution of the differential equation $${{dy} \over {dx}} + 2xy = {e^{ - {x^2}}}\,\,$$ with $$y(0)=1$$ is
GATE ME 2006
17
If $${x^2}\left( {{{d\,y} \over {d\,x}}} \right) + 2xy = {{2\ln x} \over x}$$ and $$y(1)=0$$ then what is $$y(e)$$?
GATE ME 2005
18
The solution of the differential equation $${{dy} \over {dx}} + {y^2} = 0$$ is
GATE ME 2003
19
The equation $$\,\,\,{{{d^2}u} \over {d{x^2}}} + \left( {{x^2} + 4x} \right){{dy} \over {dx}} + y = {x^8} - 8\,\,{u \over {{x^2}}} = 8.\,\,\,$$ is a
GATE ME 1999
20
The general solution of the differential equation $${x^2}{{{d^2}y} \over {d{x^2}}} - x{{dy} \over {dx}} + y = 0$$ is
GATE ME 1998
21
The one dimensional heat conduction partial difference equation $$\,\,{{\partial T} \over {\partial t}} = {{{\partial ^2}T} \over {\partial {x^2}}}\,\,$$ is
GATE ME 1996
22
The particular solution for the differential equation $${{{d^2}y} \over {d{t^2}}} + 3{{dy} \over {dx}} + 2y = 5\cos x$$ is
GATE ME 1996
23
The solution to the differential equation $$\,{f^{11}}\left( x \right) + 4{f^1}\left( x \right) + 4f\left( x \right) = 0$$
GATE ME 1995
24
A differential equation of the form $${{dy} \over {dx}} = f\left( {x,y} \right)\,\,$$ is homogeneous if the function $$f(x,y)$$ depends only on the ratio $${y \over x}$$ (or) $${x \over y}$$
GATE ME 1995
25
For the differential equation $$\,\,{{dy} \over {dt}} + 5y = 0\,\,$$ with $$y(0)=1,$$ the general solution is
GATE ME 1994
26
The differential $$\,\,\,{{{d^2}y} \over {d{x^2}}} + {{dy} \over {dx}} + \sin y = 0\,\,$$ is
GATE ME 1993
27
The differential equation $${y^{11}} + y = 0\,$$ is subjected to the conditions $$y(0) = 0,$$ $$\,\,\,y\left( \lambda \right) = 0.\,\,$$ In order that the equation has non-trivial solutions, the general value of $$\lambda $$ is.
GATE ME 1993
Marks 2
1

Let $y$ be the solution of the differential equation with the initial conditions given below. If $y(x=2)=A \ln 2$, then the value of $A$ is _________ (rounded off to 2 decimal places).

$$ x^2 \frac{d^2 y}{d x^2}+3 x \frac{d y}{d x}+y=0 \quad y(x=1)=0 \quad 3 x \frac{d y}{d x}(x=1)=1 $$

GATE ME 2025
2

If $x(t)$ satisfies the differential equation

$t \frac{dx}{dt} + (t - x) = 0$

subject to the condition $x(1) = 0$, then the value of $x(2)$ is __________ (rounded off to 2 decimal places).

GATE ME 2024
3

Consider the second-order linear ordinary differential equation

$\rm x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}-y=0, x\ge1$

with the initial conditions 

$\rm y(x=1)=6, \left.\frac{dy}{dx}\right|_{x=1}=2$

The value of 𝑦 at 𝑥 = 2 equals ________.

(Answer in integer)

GATE ME 2023
4

For the exact differential equation,

$\frac{du}{dx}=\frac{-xu^2}{2+x^2u}$

which one of the following is the solution?

GATE ME 2022 Set 2
5
Consider the differential equation $$\,\,3y''\left( x \right) + 27y\left( x \right) = 0\,\,$$ with initial conditions $$y\left( 0 \right) = 0$$ and $$y'\left( 0 \right) = 2000.\,\,$$ The value of $$y$$ at $$x=1$$ is __________.
GATE ME 2017 Set 2
6
If $$y = f(x)$$ satiesfies the boundary value problem $$\,\,y''\,\,\, + \,\,\,9y\,\,\, = \,\,\,0,\,\,\,y\left( 0 \right)\,\,\, = \,\,\,0,\,$$ $$\,\,y\left( {{\pi \over 2}} \right) = \sqrt 2 ,\,\,\,$$ then $$\,\,y\left( {{\pi \over 4}} \right)\,\,$$ is _______.
GATE ME 2016 Set 1
7
The matrix form of the linear system $${{dx} \over {dt}} = 3x - 5y$$ and $$\,{{dy} \over {dt}} = 4x + 8y\,\,$$ is
GATE ME 2014 Set 1
8
If $$\,y = f\left( x \right)\,\,$$ is the solution of $${{{d^2}y} \over {d{x^2}}} = 0$$ with the boundary conditions $$y=5$$ at $$x=0,$$ and $$\,{{dy} \over {dx}} = 2$$ at $$x=10,$$ $$f(15)=$$_______.
GATE ME 2014 Set 1
9
The general solution of the differential equation $$\,\,{{dy} \over {dx}} = \cos \left( {x + y} \right),\,\,$$ with $$c$$ as a constant, is
GATE ME 2014 Set 2
10
Consider two solutions $$\,x\left( t \right)\,\,\,\, = \,\,\,{x_1}\left( t \right)\,\,$$ and $$x\left( t \right)\,\,\,\, = \,\,\,{x_2}\left( t \right)\,\,$$ of the differential equation
$$\,\,{{{d^2}x\left( t \right)} \over {d{t^2}}} + x\left( t \right) = 0,t > 0,\,\,$$ such that
$$\,{x_1}\left( 0 \right) = 1,{\left. {{{d{x_1}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 0,$$ $$\,\,\,\,{x_2}\left( 0 \right) = 0,{\left. {{{d{x_2}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 1$$

The wronskian $$\,w\left( t \right) = \left| {{{\matrix{ {{x_1}\left( t \right)} \cr {d{x_1}\left( t \right)} \cr } } \over {dt}}} \right.\left. {{{\matrix{ {{x_2}\left( t \right)} \cr {d{x_2}\left( t \right)} \cr } } \over {dt}}} \right|$$ at $$\,\,t = \pi /2$$

GATE ME 2014 Set 3
11
The solution to the differential equation $$\,{{{d^2}u} \over {d{x^2}}} - k{{du} \over {dx}} = 0\,\,\,$$ where $$'k'$$ is a constant, subjected to the boundary conditions $$\,\,u\left( 0 \right) = 0\,\,$$ and $$\,\,\,u\left( L \right) = U,\,\,$$ is
GATE ME 2013
12
Consider the differential equation $$\,\,{x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - 4y = 0\,\,\,$$ with the boundary conditions of $$\,\,y\left( 0 \right) = 0\,\,\,$$ and $$\,\,y\left( 1 \right) = 1.\,\,\,$$ The complete solution of the differential equation is
GATE ME 2012
13
It is given that $$y'' + 2y' + y = 0,\,\,\,\,y\left( 0 \right) = 0,y\left( 1 \right) = 0.$$ What is $$y(0.5)$$?
GATE ME 2008
14
The complete solution of the ordinary differential equation $${{{d^2}y} \over {d\,{x^2}}} + p{{dy} \over {dx}} + qy = 0$$ is $$\,y = {c_1}\,{e^{ - x}} + {C_2}\,{e^{ - 3x}}\,\,$$ then $$p$$ and $$q$$ are
GATE ME 2005
15
Which of the following is a solution of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + p{{dy} \over {dx}} + \left( {q + 1} \right)y = 0?$$ Where $$p=4, q=3$$
GATE ME 2005
16
Find the solution of the differential equation $$\,{{{d^2}u} \over {d{t^2}}} + {\lambda ^2}y = \cos \left( {wt + k} \right)$$ with initial conditions $$\,y\left( 0 \right) = 0,\,\,{{dy\left( 0 \right)} \over {dt}} = 0.$$ Here $$\lambda ,$$ $$w$$ and $$k$$ are constants. Use either the method of undetermined coefficients (or) the operator $$\left( {D = {\raise0.5ex\hbox{$\scriptstyle d$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {dt}$}}} \right)$$
GATE ME 2000
17
The radial displacement in a rotating disc is governed by the differential equation $$\,\,{{{d^2}u} \over {d{x^2}}} + {1 \over x}{{du} \over {dx}} - {u \over {{x^2}}} = 8x.\,\,\,$$ where $$u$$ is the displacement and $$x$$ is the radius. If $$u=0$$ at $$x=0$$ and $$u=2$$ at $$x=1,$$ calculate the displacement at $$\,x = {1 \over {2.}}$$
GATE ME 1998
18
Solve for $$y$$ if $${{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0$$ with $$y(0)=1$$ and $${y^1}\left( 0 \right) = 2$$
GATE ME 1994