Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The general solution of the differential equation $$\,\,{{dy} \over {dx}} = \cos \left( {x + y} \right),\,\,$$ with $$c$$ as a constant, is
A
$$y + \sin \left( {x + y} \right) = x + c$$
B
$$\tan \left( {{{x + y} \over 2}} \right) = y + c$$
C
$$\cos \left( {{{x + y} \over 2}} \right) = x + c$$
D
$$\tan \left( {{{x + y} \over 2}} \right) = x + c$$
2
GATE ME 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider two solutions $$\,x\left( t \right)\,\,\,\, = \,\,\,{x_1}\left( t \right)\,\,$$ and $$x\left( t \right)\,\,\,\, = \,\,\,{x_2}\left( t \right)\,\,$$ of the differential equation
$$\,\,{{{d^2}x\left( t \right)} \over {d{t^2}}} + x\left( t \right) = 0,t > 0,\,\,$$ such that
$$\,{x_1}\left( 0 \right) = 1,{\left. {{{d{x_1}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 0,$$ $$\,\,\,\,{x_2}\left( 0 \right) = 0,{\left. {{{d{x_2}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 1$$

The wronskian $$\,w\left( t \right) = \left| {{{\matrix{ {{x_1}\left( t \right)} \cr {d{x_1}\left( t \right)} \cr } } \over {dt}}} \right.\left. {{{\matrix{ {{x_2}\left( t \right)} \cr {d{x_2}\left( t \right)} \cr } } \over {dt}}} \right|$$ at $$\,\,t = \pi /2$$

A
$$1$$
B
$$-1$$
C
$$0$$
D
$$\pi /2$$
3
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
The solution to the differential equation $$\,{{{d^2}u} \over {d{x^2}}} - k{{du} \over {dx}} = 0\,\,\,$$ where $$'k'$$ is a constant, subjected to the boundary conditions $$\,\,u\left( 0 \right) = 0\,\,$$ and $$\,\,\,u\left( L \right) = U,\,\,$$ is
A
$$u = U{x \over L}$$
B
$$u = U\left( {{{1 - {e^{kx}}} \over {1 - {e^{kL}}}}} \right)$$
C
$$u = U\left( {{{1 - {e^{ - kx}}} \over {1 - {e^{ - kL}}}}} \right)$$
D
$$u = U\left( {{{1 + {e^{kx}}} \over {1 + {e^{kL}}}}} \right)$$
4
GATE ME 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $$\,\,{x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - 4y = 0\,\,\,$$ with the boundary conditions of $$\,\,y\left( 0 \right) = 0\,\,\,$$ and $$\,\,y\left( 1 \right) = 1.\,\,\,$$ The complete solution of the differential equation is
A
$${x^2}$$
B
$$\sin \left( {{{\pi x} \over 2}} \right)$$
C
$${e^x}\sin \left( {{{\pi x} \over 2}} \right)$$
D
$${e^{ - x}}\sin \left( {{{\pi x} \over 2}} \right)$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude