ExamSIDE
Questions (Powered by ExamGOAL)
Relations and Functions
Relations and FunctionsInverse Trigonometric Function
Calculus
Continuity and DifferentiabilityApplication of DerivativesIndefinite IntegrationDefinite IntegrationApplication of IntegrationDifferential Equations
Algebra
MatricesDeterminantsProbabilityVector AlgebraThree Dimensional Geometry
Matrices
Practice Questions
MCQ (Single Correct Answer)
1

If $A=\left[\begin{array}{ccc}a & c & -1 \\ b & 0 & 5 \\ 1 & -5 & 0\end{array}\right]$ is a skew-symmetric matrix, then the value of $2 a-(b+c)$ is

CBSE 12th Mathematics Delhi Set 1 - 2024
2

If $\left[\begin{array}{lll}x & 2 & 0\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ x\end{array}\right]=\left[\begin{array}{ll}3 & 1\end{array}\right]\left[\begin{array}{c}-2 \\ x\end{array}\right]$, then value of $x$ is

CBSE 12th Mathematics Delhi Set 1 - 2024
3

Find the matrix $\mathrm{A}^2$, where $A=\left[a_{i j}\right]$ is a $2 \times 2$ matrix whose elements are given by $a_{i j}=$ maximum $(i, j)-$ minimum $(i, j)$

CBSE 12th Mathematics Delhi Set 1 - 2024
4

If for a square matrix $$\mathrm{A}, A^2-A+I=\mathrm{O}$$, then $$\mathrm{A}^{-1}$$ equals:

CBSE 12th Mathematics Delhi Set 1 - 2023
5

$$\text { If } A=\left[\begin{array}{ll} 1 & 0 \\ 2 & 1 \end{array}\right], B=\left[\begin{array}{ll} x & 0 \\ 1 & 1 \end{array}\right] \text { and } A=B^2 \text {, then } x \text { equals: }$$

CBSE 12th Mathematics Delhi Set 1 - 2023
Subjective
1

(a) If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 0 & -3 \\ 1 & 2 & 0\end{array}\right]$, then find $A^{-1}$ and hence solve the following system of equations:

$$\begin{array}{r} x+2 y-3 z=1 \\ 2 x-3 z=2 \\ x+2 y=3 \end{array}$$

OR

(b) Find the product of the matrices $\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]\left[\begin{array}{ccc}-6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1\end{array}\right]$ and hence solve the system of linear equations:

$$\begin{aligned} x+2 y-3 z & =4 \\ 2 x+3 y+2 z & =2 \\ 3 x-3 y-4 z & =11 \end{aligned}$$

CBSE 12th Mathematics Delhi Set 1 - 2024
2

$$\text { If } A=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{array}\right] \text {, then show that } A^3-23 A-40 I=O \text {. }$$

CBSE 12th Mathematics Delhi Set 1 - 2023
© 2025 ExamGOAL. All rights reserved.
Privacy PolicyTerms of Service