2017
GATE IN 20172016
GATE IN 20162015
GATE IN 20152014
GATE IN 20142013
GATE IN 20132012
GATE IN 20122011
GATE IN 20112010
GATE IN 20102009
GATE IN 20092008
GATE IN 20082007
GATE IN 20072006
GATE IN 20062005
GATE IN 20052002
GATE IN 20022001
GATE IN 20012000
GATE IN 20001999
GATE IN 19991997
GATE IN 19971995
GATE IN 19951994
GATE IN 1994GATE IN 2012
Paper was held on Thu, Jan 1, 1970 12:00 AM
1
Given that $$A = \left[ {\matrix{
{ - 5} & { - 3} \cr
2 & 0 \cr
} } \right]$$ and $${\rm I} = \left[ {\matrix{
1 & 0 \cr
0 & 1 \cr
} } \right],$$ the value of $${A^3}$$ is
2
The maximum value of $$f\left( x \right) = {x^3} - 9{x^2} + 24x + 5$$ in the interval $$\left[ {1,6} \right]$$ is
3
The direction of vector $$A$$ is radially outward from the origin, with $$\left| A \right| = K\,{r^n}$$ where $${r^2} = {x^2} + {y^2} + {z^2}$$ and $$K$$ is constant. The value of $$n$$ for which $$\nabla .A = 0\,\,$$ is
4
Two independent random variables $$X$$ and $$Y$$ are uniformly distributed in the interval $$\left[ { - 1,1} \right].$$ The probability that max $$\left[ {X,Y} \right]$$ is less than $$1/2$$ is
5
A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is
6
With initial condition $$x\left( 1 \right)\,\,\, = \,\,\,\,0.5,\,\,\,$$ the solution of the differential equation, $$\,\,\,t{{dx} \over {dt}} + x = t\,\,\,$$ is
7
If $$x\left[ N \right] = {\left( {1/3} \right)^{\left| n \right|}} - {\left( {1/2} \right)^n}\,u\left[ n \right],$$ then the region of convergence $$(ROC)$$ of its $$Z$$-transform in the $$Z$$-plane will be
8
The unilateral Laplace transform of $$f(t)$$ is
$$\,{1 \over {{s^2} + s + 1}}.$$ The unilateral Laplace transform of $$t$$ $$f(t)$$ is
$$\,{1 \over {{s^2} + s + 1}}.$$ The unilateral Laplace transform of $$t$$ $$f(t)$$ is
9
Consider the differential equation
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$
The numerical value of $${{dy} \over {dt}}\left| {_{t = 0}.} \right.$$ is