Algebra
Complex NumbersLogarithmsQuadratic EquationsSequences and SeriesPermutations and CombinationsProbabilitySets and RelationsBinomial TheoremVector AlgebraThree Dimensional GeometryMatrices and DeterminantsStatisticsTrigonometry
Trigonometric Ratios & IdentitiesTrigonometric EquationsInverse Trigonometric FunctionsProperties of TrianglesCalculus
FunctionsLimits, Continuity and DifferentiabilityDifferentiationApplication of DerivativesIndefinite IntegrationDefinite IntegrationArea Under The CurvesDifferential EquationsCoordinate Geometry
Straight Lines and Pair of Straight LinesCircleParabolaEllipseHyperbolaLimits, Continuity and Differentiability
Practice QuestionsMCQ (Single Correct Answer)
1
$\lim\limits_{x \rightarrow \frac{3}{2}} \frac{\left(4 x^{2}-6 x\right)\left(4 x^{2}+6 x+9\right)}{\sqrt[3]{2 x}-\sqrt[3]{3}}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
If the real valued function $f(x)=\int \frac{\left(4^{x}-1\right)^{4} \cot (x \log 4)}{\sin (x \log 4) \log \left(1+x^{2} \log 4\right)}, \quad$ if $x \neq 0$ is continuous at $x=0$, then $e^{k}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
If $0 \leq x \leq \frac{\pi}{2}$, then $\lim _{x \rightarrow a} \frac{|2 \cos x-1|}{2 \cos x-1}$
TG EAPCET 2024 (Online) 10th May Evening Shift
4
The real valued function $f(x)=\frac{|x-a|}{x-a}$ is
TG EAPCET 2024 (Online) 10th May Evening Shift
5
If $f(x)=3 x^{15}-5 x^{10}+7 x^{5}+50 \cos (x-1)$, then $\lim\limits_{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$
TG EAPCET 2024 (Online) 10th May Evening Shift
6
If the function $f(x)=\left\{\begin{array}{cl}\frac{\left(e^{k x}-1\right) \sin k x}{4 \tan x} & x \neq 0 \\ P & x=0\end{array}\right.$ is differentiable at $x=0$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
7
If Rolle's Theorem is applicable for the function $f(x)=\left\{\begin{array}{cl}x^{p} \log x, & x \neq 0 \\ 0, & x=0\end{array}\right.$ on the interval $[0,1]$, then a possible value of $p$ is
TG EAPCET 2024 (Online) 10th May Evening Shift
8
If $\lim \limits_{x \rightarrow 4} \frac{2 x^2+(3+2 a) x+3 a}{x^3-2 x^2-23 x+60}=\frac{11}{9}$, then $\lim \limits_{x \rightarrow a} \frac{x^2+9 x+20}{x^2-x-20}=$
TG EAPCET 2024 (Online) 10th May Morning Shift
9
If the function
$$
f(x)= \begin{cases}\frac{\tan a(x-1)}{x-1}, & \text { if } 04\end{cases}
$$
domain, then $6 a+9 b^4=$
TG EAPCET 2024 (Online) 10th May Morning Shift
10
$\lim _{\theta \rightarrow \frac{\pi^{-}}{2}} \frac{8 \tan ^4 \theta+4 \tan ^2 \theta+5}{(3-2 \tan \theta)^4}=$
TG EAPCET 2024 (Online) 9th May Evening Shift
11
Define $ f: R \rightarrow R $ by $ f(x)=\left\{\begin{array}{cl}\frac{1-\cos 4 x}{x^{2}}, & x < 0 \\ a, & x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x > 0\end{array}\right. $
Then, the value of $ a $ so that $ f $ is continuous at $ x=0 $ is
TG EAPCET 2024 (Online) 9th May Evening Shift
12
$\lim _{x \rightarrow 0} \frac{3^{\sin x}-2^{\tan x}}{\sin x}=$
TG EAPCET 2024 (Online) 9th May Morning Shift
13
If the function
$$ f(x)=\left\{\begin{array}{cc} \frac{\cos a x-\cos 9 x}{x^2} & \text {, if } x \neq 0 \\ 16 & \text {, if } x=0 \end{array}\right. $$
is continuous at $x=0$, then $a=$
TG EAPCET 2024 (Online) 9th May Morning Shift
14
If $ f(x)=\left\{\begin{array}{ll}\frac{8}{x^{3}}-6 x & \text {, if } 0 < x \leq 1 \\\\ \frac{x-1}{\sqrt{x}-1} & \text {,if } x > 1\end{array}\right. $ is a real valued function, then at $ x=1, f $ is
TG EAPCET 2024 (Online) 9th May Morning Shift
15
$\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots .(2)\right]^{1 / n}=$
TG EAPCET 2024 (Online) 9th May Morning Shift
16
$$
\lim \limits_{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=
$$
TS EAMCET 2023 (Online) 12th May Morning Shift
17
If $a, b, c$ and $k$ are non-zero real numbers and $\lim \limits_{x \rightarrow \infty} x\left(a^{1 / x}+b^{1 / x}+c^{1 / x}-3 k^{1 / x}\right)=0$, then $k=$
TS EAMCET 2023 (Online) 12th May Morning Shift