Electromagnetism
Current Electricity
MCQ (Single Correct Answer)
Moving Charges and Magnetism
MCQ (Single Correct Answer)
Magnetism and Matter
MCQ (Single Correct Answer)
Electromagnetic Waves
MCQ (Single Correct Answer)
Electromagnetic Induction
MCQ (Single Correct Answer)
Alternating Current
MCQ (Single Correct Answer)
Modern Physics
Dual Nature of Radiation
MCQ (Single Correct Answer)
Semiconductor Devices and Logic Gates
MCQ (Single Correct Answer)
Communication Systems
MCQ (Single Correct Answer)
1
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A vector $P$ has $X$ and $Y$ components of magnitude 2 units and 4 units respectively. A vector $Q$ along negative $X$-axis has magnitude 6 units. The vector $(\mathbf{Q}-\mathbf{P})$ will be

A
$4(2 \hat{i}-\hat{j})$
B
$-4(2 \hat{\mathbf{i}}-\hat{\mathrm{j}})$
C
$4(2 \hat{i}+\hat{j})$
D
$-4(2 \hat{i}+\hat{j})$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$\mathbf{P}$ and $\mathbf{Q}$ are two non-zero vectors inclined to each other at an angle ' $\theta$ '. ' $p$ ' and ' $q$ ' are unit vectors along $\mathbf{P}$ and $\mathbf{Q}$ respectively. The component of $\mathbf{Q}$ in the direction of $\mathbf{Q}$ will be

A
$P \cdot Q$
B
$\frac{P \times Q}{P}$
C
$\frac{P \cdot Q}{Q}$
D
$p \cdot q$
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The resultant $\mathbf{R}$ of $\mathbf{P}$ and $\mathbf{Q}$ is perpendicular to $\mathbf{P}$. Also $|\mathbf{P}|=|\mathbf{R}|$. The angle between $\mathbf{P}$ and $\mathbf{Q}$ is $\left[\tan 45^{\circ}=1\right]$

A
$\frac{5 \pi}{4}$
B
$\frac{7 \pi}{4}$
C
$\frac{\pi}{4}$
D
$\frac{3 \pi}{4}$
4
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\sqrt{A^2+B^2}$ represents the magnitude of resultant of two vectors $(\mathbf{A}+\mathbf{B})$ and $(\mathbf{A}-\mathbf{B})$, then the angle between two vectors is

A
$\cos ^{-1}\left[-\frac{2\left(A^2-B^2\right)}{\left(A^2+B^2\right)}\right]$
B
$\cos ^{-1}\left[-\frac{A^2-B^2}{A^2 B^2}\right]$
C
$\cos ^{-1}\left[-\frac{\left(A^2+B^2\right)}{2\left(A^2-B^2\right)}\right]$
D
$\cos ^{-1}\left[-\frac{\left(A^2-B^2\right)}{A^2+B^2}\right]$
MHT CET Subjects