Differentiation
Practice Questions
MCQ (Single Correct Answer)
1

If $\mathrm{g}(x)=[\mathrm{f}(2 \mathrm{f}(x)+2)]^2$ and $\mathrm{f}(0)=-1, \mathrm{f}^{\prime}(0)=1$ then $g^{\prime}(0)$ is

MHT CET 2024 16th May Evening Shift
2

If $\mathrm{f}(x)=\frac{a \sin x+b \cos x}{c \sin x+d \cos x}$ is decreasing for all $x$ then

MHT CET 2024 16th May Evening Shift
3

If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ is equal to

MHT CET 2024 16th May Morning Shift
4

If $f(1)=1, f^{\prime}(1)=5$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

MHT CET 2024 16th May Morning Shift
5

If $x=\sin \theta, y=\sin ^3 \theta$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ at $\theta=\frac{\pi}{2}$ is

MHT CET 2024 15th May Evening Shift
6

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

MHT CET 2024 15th May Evening Shift
7

The derivative of $\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)$ w.r.t. $\sin ^{-1}\left(3 x-4 x^3\right)$ is

MHT CET 2024 15th May Evening Shift
8

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

MHT CET 2024 15th May Evening Shift
9

If $$ y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^2 $$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

MHT CET 2024 15th May Morning Shift
10

If $(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^2-b^2$, where $\mathrm{a}>\mathrm{b}>0$, then $\frac{\mathrm{d} x}{\mathrm{~d} y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

MHT CET 2024 15th May Morning Shift
11

If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, then $\frac{\mathrm{d}^2 y}{d x^2}$ is equal to

MHT CET 2024 15th May Morning Shift
12

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

MHT CET 2024 11th May Evening Shift
13

Let $\mathrm{f}(x)=\frac{x}{\sqrt{\mathrm{a}^2+x^2}}-\frac{\mathrm{d}-x}{\sqrt{\mathrm{~b}^2+(\mathrm{d}-x)^2}}, x \in \mathbb{R}$ where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are non-zero real constants. Then

MHT CET 2024 11th May Evening Shift
14

If $y=(\sin x)^{\tan x}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 11th May Evening Shift
15

If $\mathrm{f}(x)=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$, then $f^{\prime}(1)=$

MHT CET 2024 11th May Morning Shift
16

If $x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}, x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

MHT CET 2024 11th May Morning Shift
17

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

MHT CET 2024 10th May Evening Shift
18

If $x^2 y^2=\sin ^{-1} x+\cos ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ and $y=2$ is

MHT CET 2024 10th May Evening Shift
19

If $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x)=4 x^3-\frac{3}{x^4}$ such that $\mathrm{f}(2)=0$, then $\mathrm{f}(x)$ is equal to

MHT CET 2024 10th May Evening Shift
20
If $$y = {{\sin x} \over {1 + {{\cos x} \over {1 + {{\sin x} \over {1 + {{\cos x} \over {...}}}}}}}}$$, then $\frac{dy}{dx}$ is given by
MHT CET 2024 10th May Morning Shift
21

The curve $x^4-2 x y^2+y^2+3 x-3 y=0$ cuts the X -axis at $(0,0)$ at an angle of

MHT CET 2024 10th May Morning Shift
22

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

MHT CET 2024 10th May Morning Shift
23

If $y=a x^{n+1}+b x^{-n}$, then $x^2 \frac{d^2 y}{d x^2}=$

MHT CET 2024 10th May Morning Shift
24

If $y=\sin ^{-1}\left(\frac{3 x}{2}-\frac{x^3}{2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 9th May Evening Shift
25

If $\log (x+y)=\sin (x+y)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is

MHT CET 2024 9th May Evening Shift
26

Let $\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$ and $\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$, then $\left(\frac{h^{\prime}(x)}{h(x)}\right)^2$ is equal to

MHT CET 2024 9th May Evening Shift
27

If for $x \in\left(0, \frac{1}{4}\right)$, the derivative of $\tan ^{-1}\left(\frac{6 x \sqrt{x}}{1-9 x^3}\right)$ is $\sqrt{x} \cdot g(x)$, then $g(x)$ equals

MHT CET 2024 9th May Morning Shift
28
 

Derivative of $\mathrm{e}^x$ w.r.t. $\sqrt{x}$ is

MHT CET 2024 9th May Morning Shift
29

If $\mathrm{f}(x)=\frac{x^2-x}{x^2+2 x}$ then $\frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{f}^{-1}(x)\right)$ at $x=2$ is

MHT CET 2024 9th May Morning Shift
30

If $y=A \cos \mathrm{n} x+\mathrm{B} \sin \mathrm{nx}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}=$

MHT CET 2024 4th May Evening Shift
31

If the function $\mathrm{f}(x)=x^3+\mathrm{e}^{\frac{x}{2}}$ and $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ then the value of $g^{\prime}(1)$ is

MHT CET 2024 4th May Morning Shift
32

If $y=\left((x+1)(4 x+1)(9 x+1) \ldots\left(\mathrm{n}^2 x+1\right)\right)^2$, then $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ is

MHT CET 2024 4th May Morning Shift
33

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

MHT CET 2024 3rd May Evening Shift
34

Derivative of $\sin ^2 x$ with respect to $e^{\cos x}$

MHT CET 2024 3rd May Evening Shift
35

If $y=\log \left[\mathrm{e}^{5 x}\left(\frac{3 x-4}{x+5}\right)^{\frac{4}{3}}\right]$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 3rd May Morning Shift
36
 

Let $f$ be a twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=[\mathrm{f}(x)]^2+[\mathrm{g}(x)]^2$. If $\mathrm{h}(5)=1$, then $\mathrm{h}(10)$ is __________.

MHT CET 2024 3rd May Morning Shift
37

If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ is equal to

MHT CET 2024 3rd May Morning Shift
38

If $\mathrm{f}(x)=\log _{x^2}\left(\log _{\mathrm{e}} x\right)$, then $\mathrm{f}^{\prime}(x)$ at $x=\mathrm{e}$ is

MHT CET 2024 2nd May Evening Shift
39

If $x=\sec \theta-\cos \theta, y=\sec ^{10} \theta-\cos ^{10} \theta$ and $\left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=k\left(y^2+4\right)$, then the value of $k$ is

MHT CET 2024 2nd May Evening Shift
40

If $\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \cdot 3^x}{1+9^x}\right)$, then $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ equals

MHT CET 2024 2nd May Evening Shift
41

If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to

MHT CET 2024 2nd May Evening Shift
42

The approximate value of $\sqrt[3]{0.026}$ is

MHT CET 2024 2nd May Evening Shift
43

If $y=\left[\mathrm{e}^{4 x}\left(\frac{x-4}{x+3}\right)^{\frac{3}{4}}\right]$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

MHT CET 2024 2nd May Morning Shift
44

If $y=a \sin x+b \cos x \quad$ (where $\mathrm{a}$ and $\mathrm{b}$ are constants), then $y^2+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$ is

MHT CET 2024 2nd May Morning Shift
45

If $y=\sqrt{\frac{1-\sin ^{-1} x}{1+\sin ^{-1} x}}$, then $\left(\frac{d y}{d x}\right)$ at $x=0$ is

MHT CET 2024 2nd May Morning Shift
46

If $$x=\sqrt{\mathrm{e}^{\sin ^{-1} t}}$$ and $$y=\sqrt{\mathrm{e}^{\cos ^{-1} t}}$$, then $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ is

MHT CET 2023 14th May Evening Shift
47

If $$\mathrm{f}^{\prime}(x)=\sin (\log x)$$ and $$y=\mathrm{f}\left(\frac{2 x+3}{3-2 x}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=1$$ is

MHT CET 2023 14th May Evening Shift
48

Let $$\mathrm{P}(x)$$ be a polynomial of degree 2, with $$\mathrm{P}(2)=-1, \mathrm{P}^{\prime}(2)=0, \mathrm{P}^{\prime \prime}(2)=2$$, then $$\mathrm{P}(1.001)$$ is

MHT CET 2023 14th May Evening Shift
49

If $$y=\sqrt{(x-\sin x)+\sqrt{(x-\sin x)+\sqrt{(x-\sin x) \ldots.}}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}=$$

MHT CET 2023 14th May Evening Shift
50

Let $$f: R \rightarrow R$$ be a function such that $$\mathrm{f}(x)=x^3+x^2 \mathrm{f}^{\prime}(1)+x \mathrm{f}^{\prime \prime}(2)+6, x \in \mathrm{R}$$, then $$\mathrm{f}(2)$$ equals

MHT CET 2023 14th May Morning Shift
51

$$\text { If } y=\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2, \text { then }\left(1-x^2\right) y_2-x y_1=$$

MHT CET 2023 14th May Morning Shift
52

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots(\mathrm{n} x+1)]^n$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 14th May Morning Shift
53

The money invested in a company is compounded continuously. If ₹ 200 invested today becomes ₹ 400 in 6 years, then at the end of 33 years it will become ₹

MHT CET 2023 14th May Morning Shift
54

$$y=\frac{\sqrt[3]{1+3 x} \sqrt[4]{1+4 x} \sqrt[5]{1+5 x}}{\sqrt[7]{1+7 x} \sqrt[8]{1+8 x}} \text {. Then, } \frac{d y}{d x} \text { at } x=0$$ is

MHT CET 2023 13th May Evening Shift
55

Let $$f: R \rightarrow R$$ be a function such that $$f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R \text {, }$$ then $$f(2)$$ equals

MHT CET 2023 13th May Evening Shift
56

If $$x=\log _e\left(\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}\right), \tan \frac{y}{2}=\sqrt{\frac{1-t}{1+t}}$$ Then, $$\left(y_1\right)_{t=1 / 2}$$ has the value

MHT CET 2023 13th May Evening Shift
57

Differentiation of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$ w.r.t. $$\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^2}}{2 \sqrt{1+x^2}}}\right)$$ is

MHT CET 2023 13th May Morning Shift
58

If $$y=\tan ^{-1}\left(\frac{4 \sin 2 x}{\cos 2 x-6 \sin ^2 x}\right)$$, then $$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$$ at $$x=0$$ is

MHT CET 2023 13th May Morning Shift
59

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ be a function such that $$\mathrm{f}(x)=x^3+x^2 \mathrm{f}^{\prime}(1)+x \mathrm{f}^{\prime \prime}(2)+6, x \in \mathrm{R}$$, then $$\mathrm{f}(2)$$ is

MHT CET 2023 13th May Morning Shift
60

If $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \log x}{1+(\log x)^2}\right)$$, then $$\mathrm{f}^{\prime}(\mathrm{e})$$ is

MHT CET 2023 12th May Evening Shift
61

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$\left(1+\log _e 2 x\right)^2 \frac{d y}{d x}$$ is equal to

MHT CET 2023 12th May Evening Shift
62

If $$\tan y=\frac{x \sin \alpha}{1-x \cos \alpha}$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{m}}{x^2+2 \mathrm{n} x+1}$$, then $$\mathrm{m}^2+\mathrm{n}^2$$ is

MHT CET 2023 12th May Evening Shift
63

The derivative of $$\mathrm{f}(\tan x)$$ w.r.t. $$\mathrm{g}(\sec x)$$ at $$x=\frac{\pi}{4}$$ where $$\mathrm{f}^{\prime}(1)=2$$ and $$\mathrm{g}^{\prime}(\sqrt{2})=4$$ is

MHT CET 2023 12th May Morning Shift
64

If $$x=-1$$ and $$x=2$$ are extreme points of $$\mathrm{f}(x)=\alpha \log x+\beta x^2+x, \alpha$$ and $$\beta$$ are constants, then the value of $$\alpha^2+2 \beta$$ is

MHT CET 2023 12th May Morning Shift
65

$$\text { If } \log (x+y)=2 x y \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { at } x=0 \text { is }$$

MHT CET 2023 12th May Morning Shift
66

$$y=(1+x)\left(1+x^2\right)\left(1+x^4\right) \ldots \ldots \ldots\left(1+x^{2 n}\right)$$, then the value of $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 12th May Morning Shift
67

If $$\mathrm{f}(x)=3^x ; \mathrm{g}(x)=4^x$$, then $$\frac{\mathrm{f}^{\prime}(0)-\mathrm{g}^{\prime}(0)}{1+\mathrm{f}^{\prime}(0) \mathrm{g}^{\prime}(0)}$$ is

MHT CET 2023 11th May Evening Shift
68

$$\text { For all real } x \text {, the minimum value of } \frac{1-x+x^2}{1+x+x^2} \text { is }$$

MHT CET 2023 11th May Evening Shift
69

The set of all points, where the derivative of the functions $$\mathrm{f}(x)=\frac{x}{1+|x|}$$ exists, is

MHT CET 2023 11th May Evening Shift
70

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots(\mathrm{n} x+1)]^{\frac{3}{2}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 11th May Evening Shift
71

If $$y=\log _{\sin x} \tan x$$, then $$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=\frac{\pi}{4}}$$ has the value

MHT CET 2023 11th May Morning Shift
72

Let $$\mathrm{f}(x)=\log (\sin x), 0 < x < \pi$$ and $$\mathrm{g}(x)=\sin ^{-1}\left(\mathrm{e}^{-x}\right), x \geq 0$$. If $$\alpha$$ is a positive real number such that $$\mathrm{a}=(\mathrm{fog})^{\prime}(\alpha)$$ and $$\mathrm{b}=(\mathrm{fog})(\alpha)$$, then

MHT CET 2023 11th May Morning Shift
73

Derivative of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right)$$ w.r.t. $$\cos ^{-1} x^2$$ is

MHT CET 2023 11th May Morning Shift
74

Let $$f$$ be a differentiable function such that $$\mathrm{f}(1)=2$$ and $$\mathrm{f}^{\prime}(x)=\mathrm{f}(x)$$, for all $$x \in \mathrm{R}$$. If $$\mathrm{h}(x)=\mathrm{f}(\mathrm{f}(x))$$, then $$\mathrm{h}^{\prime}(1)$$ is equal to

MHT CET 2023 10th May Evening Shift
75

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then $$\frac{d y}{d x}$$ at $$x=0$$ is

MHT CET 2023 10th May Evening Shift
76

If $$x=3 \tan \mathrm{t}$$ and $$y=3 \sec \mathrm{t}$$, then the value of $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ at $$\mathrm{t}=\frac{\pi}{4}$$ is

MHT CET 2023 10th May Evening Shift
77

If $$y=\tan ^{-1}\left(\frac{\log \left(\frac{\mathrm{e}}{x^2}\right)}{\log \left(e x^2\right)}\right)+\tan ^{-1}\left(\frac{4+2 \log x}{1-8 \log x}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is

MHT CET 2023 10th May Evening Shift
78

If $$y=\cos ^{-1}\left(\frac{\mathrm{a}^2}{\sqrt{x^4+\mathrm{a}^4}}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is

MHT CET 2023 10th May Morning Shift
79

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$(1+\log 2 x)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2023 10th May Morning Shift
80

If $$\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$$ and $$\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$$, then $$\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}$$ is

MHT CET 2023 10th May Morning Shift
81

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then the value of $$y^{\prime}(0)$$ is

MHT CET 2023 9th May Evening Shift
82

If $$x^{\mathrm{k}}+y^{\mathrm{k}}=\mathrm{a}^{\mathrm{k}}(\mathrm{a}, \mathrm{k}>0)$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$$, then $$\mathrm{k}$$ has the value

MHT CET 2023 9th May Evening Shift
83

If $$\mathrm{g}$$ is the inverse of $$\mathrm{f}$$ and $$\mathrm{f}^{\prime}(x)=\frac{1}{1+x^3}$$, then $$\mathrm{g}^{\prime}(x)$$ is

MHT CET 2023 9th May Evening Shift
84

The rate of change of $$\sqrt{x^2+16}$$ with respect to $$\frac{x}{x-1}$$ at $$x=5$$ is

MHT CET 2023 9th May Morning Shift
85

If $$x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}$$ and $$x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2023 9th May Morning Shift
86

If $$\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$$, then the derivative of $$\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$$ at $$x=1$$ is

MHT CET 2023 9th May Morning Shift
87

The derivative of $$\mathrm{f}(\sec x)$$ with respect to $$g(\tan x)$$ at $$x=\frac{\pi}{4}$$, where $$f^{\prime}(\sqrt{2})=4$$ and $$g^{\prime}(1)=2$$, is

MHT CET 2023 9th May Morning Shift
88

If $$y=\log \sqrt{\frac{1+\sin x}{1-\sin x}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=\frac{\pi}{3}$$ is

MHT CET 2022 11th August Evening Shift
89

If $$y=\sin \left(2 \tan ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$$ then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2022 11th August Evening Shift
90

If $$y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 x, x \neq 1$$, then $$\left(x^2-1\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$$ is equal to

MHT CET 2022 11th August Evening Shift
91

If $$y=1+x e^y$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Evening Shift
92

If $$x=e^t(\sin t-\cos t)$$ and $$y=e^t(\sin t+\cos t)$$, then $$\frac{d y}{d x}$$ at $$t=\frac{\pi}{3}$$ is

MHT CET 2021 24th September Evening Shift
93

If $$\sin ^2 x+\cos ^2 y=1$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Evening Shift
94

$$ \text { If } u=\cos ^3 x, v=\sin ^3 x \text {, then }\left(\frac{d v}{d u}\right)_{x=\frac{\pi}{4}} \text { is equal to } $$

MHT CET 2021 24th September Morning Shift
95

If $$y=\log _{10} x+\log _x 10+\log _x x+\log _{10} 10$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Morning Shift
96

If $$y=x \tan y$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 23rd September Evening Shift
97

The derivative of the function $$\cot ^{-1}\left[(\cos 2 x)^{1 / 2}\right]$$ at $$x=\pi / 6$$ is

MHT CET 2021 23rd September Evening Shift
98

For all real $$x$$, the minimum value of the function $$f(x)=\frac{1-x+x^2}{1+x+x^2}$$ is

MHT CET 2021 23rd September Evening Shift
99

If $$f(x)=\operatorname{cosec}^{-1}\left[\frac{10}{6 \sin \left(2^x\right)-8 \cos \left(2^x\right)}\right]$$, then $$f^{\prime}(x)=$$

MHT CET 2021 23th September Morning Shift
100

If $$y=\log \sqrt{\tan x}$$, then the value of $$\frac{d y}{d x}$$ at $$x=\frac{\pi}{4}$$ is

MHT CET 2021 23th September Morning Shift
101

If $$\mathrm{x}=\mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)$$ and $$\mathrm{y}=\mathrm{b}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$$, then $$\frac{\mathrm{dy}}{\mathrm{dx}}=$$

MHT CET 2021 23th September Morning Shift
102

If $$y=\tan ^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 22th September Evening Shift
103

If $$x^y \cdot y^x=16$$, then $\frac{d y}{d x}$ at $(2,2)$$ is

MHT CET 2021 22th September Evening Shift
104

If $$y^2=a x^2+b x+c$$, where $$a, b, c$$ are constants, then $$y^3 \frac{d^2 y}{d x^2}$$ is equal to

MHT CET 2021 22th September Morning Shift
105

$$x=\frac{1-t^2}{1+t^2}$$ and $$y=\frac{2 a t}{1+t^2}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 22th September Morning Shift
106

If y = 2 sin x + 3 cos x and y + A$$\mathrm{\frac{d^2y}{dx^2}}$$ = B, then the values of A, B are respectively

MHT CET 2021 21th September Evening Shift
107

If $$y = {\tan ^{ - 1}}\left\{ {{{a\cos x - b\sin x} \over {b\cos x + a\sin x}}} \right\}$$, then $${{dy} \over {dx}}$$

MHT CET 2021 21th September Evening Shift
108

If $$e^{-y} \cdot y=x$$, then $$\frac{d y}{d x}$$ is

MHT CET 2021 21th September Morning Shift
109

If $$y=\operatorname{cosec}^{-1}\left[\frac{\sqrt{x}+1}{\sqrt{x}-1}\right]+\cos ^{-1}\left[\frac{\sqrt{x}-1}{\sqrt{x}+1}\right]$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 21th September Morning Shift
110

The derivative of $$(\log x)^x$$ with respect to $$\log x$$ is

MHT CET 2021 21th September Morning Shift
111

$$y=\sqrt{e^{\sqrt{x}}}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Evening Shift
112

If $$y=\sin ^{-1}\left[\cos \sqrt{\frac{1+x}{2}}\right]+x^x$$, then $$\frac{d y}{d x}$$ at $$x=1$$ is

MHT CET 2021 20th September Evening Shift
113

If $$x=a(t+\sin t), y=a(1-\cos t)$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Evening Shift
114

If $$y=\log \tan \left(\frac{x}{2}\right)+\sin ^{-1}(\cos x)$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Morning Shift
115

If $$h(x)=\sqrt{4 f(x)+3 g(x)}, f(1)=4, g(1)=3, f^{\prime}(1)=3, g^{\prime}(1)=4$$, then $$h^{\prime}(1)=$$

MHT CET 2021 20th September Morning Shift
116

If $$x=a \cos \theta, y=b \sin \theta$$, then $$\left[\frac{d^2 y}{d x^2}\right]_{\theta=\frac{\pi}{4}}=$$

MHT CET 2021 20th September Morning Shift
117

If $x=a \sin t-b \cos t, y=a \cos t+b \sin t$, then $y^3 \frac{d^2 y}{d x^2}+x^2+y^2=$

MHT CET 2020 19th October Evening Shift
118

If $y=\sin ^{-1}\left[\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]$, then $\frac{d y}{d x}=$

MHT CET 2020 19th October Evening Shift
119

If $x^2 y^2=\sin ^{-1} \sqrt{x^2+y^2}+\cos ^{-1} \sqrt{x^2+y^2}$ then $\frac{d y}{d x}=$

MHT CET 2020 19th October Evening Shift
120

If $$f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)$$, then $$f^{\prime}(x)=$$

MHT CET 2020 16th October Evening Shift
121

If $$\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y$$, then $$(1+x)^2 \frac{d y}{d x}=$$

MHT CET 2020 16th October Morning Shift
122

If $$\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4$$, then $$\frac{d y}{d x}=$$

MHT CET 2020 16th October Morning Shift
123

If $$f(x)=\log (\sec x+\tan x)$$, then $$f^{\prime}\left(\frac{\pi}{4}\right)=$$

MHT CET 2020 16th October Morning Shift
124

If $y=\log \left[\frac{x+\sqrt{x^2+25}}{\sqrt{x^2+25}-x}\right]$ then $\frac{d y}{d x}=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
125

If $x=\sin \theta, y=\sin ^3 \theta$ then $\frac{d^2 y}{d x^2}$ at $\theta=\frac{\pi}{2}$ is ............

MHT CET 2019 2nd May Evening Shift
126

If $x^y=e^{x-y}$, then $\frac{d y}{d x}$ at $x=1$ is ...........

MHT CET 2019 2nd May Evening Shift
127

Derivative of $\log _{e^2}(\log x)$ with respect to $x$ is

MHT CET 2019 2nd May Morning Shift
128

If $x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}$, then $\frac{d y}{d x}=\ldots .$.

MHT CET 2019 2nd May Morning Shift