Vector Algebra
Practice Questions
MCQ (Single Correct Answer)
1

If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{c}$, then the value of $\lambda$ is

KCET 2025
2
If $|\overrightarrow{\mathrm{a}}|=10,|\overrightarrow{\mathrm{~b}}|=2$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=12$, then the value of $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$ is
KCET 2025
3

Consider the following statements :

Statement (I) : If either $|\vec{a}|=0$ or $|\vec{b}|=0$, then $\vec{a} \cdot \vec{b}=0$

Statement (II) : If $\vec{a} \times \vec{b}=\overrightarrow{0}$, then a is perpendicular to $b$. Which of the following is correct?

KCET 2025
4

The vectors $\mathbf{A B}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$ and $\mathbf{A C}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ are the sides of a $\triangle A B C$, The length of the median through $A$ is

KCET 2024
5

The volume of the parallelopiped whose co terminous edges are $\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is

KCET 2024
6

Let $\mathbf{a}$ and $\mathbf{b}$ be two unit vectors and $\theta$ is the angle between them. Then, $\mathbf{a}+\mathbf{b}$ is a unit vector, if

KCET 2024
7

If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three non-coplanar vectors and $p, q$ and $r$ are vectors defined by $\mathbf{p}=\frac{\mathbf{a} \times \mathbf{c}}{[\mathbf{a b c}]}, \mathbf{q}=\frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a b c} \mathbf{b}}, \mathbf{r}=\frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b}]}$, then $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{p}+(\mathbf{b}+\mathbf{c}) \cdot \mathbf{q}+(\mathbf{c}+\mathbf{a}) \cdot \mathbf{r}$ is

KCET 2024
8

$$|\mathbf{a} \times \mathbf{b}|^2+|\mathbf{a} \cdot \mathbf{b}|^2=144$$ and $$|\mathbf{a}|=4$$, then $$|\mathbf{b}|$$ is equal to

KCET 2023
9

If $$\mathbf{a}+2 \mathbf{b}+3 \mathbf{c}=0$$ and $$(\mathbf{a} \times \mathbf{b})+(\mathbf{b} \times \mathbf{c})+(\mathbf{c} \times \mathbf{a})=\lambda(\mathbf{b} \times \mathbf{c})$$, then the value of $$\lambda$$ is equal to

KCET 2023
10

If $$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$$, then

KCET 2023
11

The component of $$\hat{\mathbf{i}}$$ in the direction of the vector $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ is

KCET 2023
12

If $$|\mathbf{a}|=2$$ and $$|\mathbf{b}|=3$$ and the angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is $$120^{\circ}$$, then the length of the vector $$\left|\frac{\mathbf{a}}{2}-\frac{\mathbf{b}}{3}\right|$$ is

KCET 2022
13

If $$|\mathbf{a} \times \mathbf{b}|^2+|\mathbf{a} \cdot \mathbf{b}|^2=36$$ and $$|\mathbf{a}|=3$$, then $$|\mathbf{a}|$$ is equal to

KCET 2022
14

If $$\alpha=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}, \beta=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$, then express $$\beta$$ in the form $$\beta=\beta_1+\beta_2$$ where $$\beta_1$$ is parallel to $$\alpha$$ and $$\beta_2$$ is perpendicular to $$\alpha$$, then $$\beta_1$$ is given by

KCET 2022
15

A vector a makes equal acute angles on the coordinate axis. Then the projection of vector $$\mathbf{b}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ on $$\mathbf{a}$$ is

KCET 2021
16

The diagonals of a parallelogram are the vectors $$3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$. and $$-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$$. Then the length of the shorter side of parallelogram is

KCET 2021
17

If $$\mathbf{a} \cdot \mathbf{b}=0$$ and $$\mathbf{a}+\mathbf{b}$$ makes an angle $$60^{\circ}$$ with $$a$$, then

KCET 2021
18

If the area of the parallelogram with $$\mathbf{a}$$ and $$\mathbf{b}$$ as two adjacent sides is 15 sq units, then the area of the parallelogram having $$\mathrm{3 a+2 b}$$ and $$\mathbf{a}+3 \mathbf{b}$$ as two adjacent sides in sq units is

KCET 2021
19

The two vector $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$$ represent the two sides $$\overline{A B}$$ and $$\overline{A C}$$ respectively of a $$\triangle A B C$$. The length of the median through $$A$$ is

KCET 2020
20

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are unit vectors and $$\theta$$ is the angle between $$\mathbf{a}$$ and $$\mathbf{b}$$, then $$\sin \frac{\theta}{2}$$ is equal to

KCET 2020
21

If $$|\mathbf{a}+\mathbf{b}|^2+|\mathbf{a} \cdot \mathbf{b}|^2=144|\mathbf{a}|=6$$, then $$|\mathbf{b}|$$ is equal to

KCET 2020
22

If the vectors $$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\lambda \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ are coplanar, then the value of $$\lambda$$ is

KCET 2020
23

If $$|\mathbf{a}|=16,|\mathbf{b}|=4$$, then $$\sqrt{|\mathbf{a} \times \mathbf{b}|^2+|\mathbf{a} \cdot \mathbf{b}|^2}=$$

KCET 2019
24

If the angle between $$\mathbf{a}$$ & $$\mathbf{b}$$ is $$\frac{2 \pi}{3}$$ and the projection of $$\mathbf{a}$$ in the direction of $$\mathbf{b}$$ is $$-$$2 , the $$|\mathbf{a}|=$$

KCET 2019
25

A unit vector perpendicular to the plane containing the vector $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$ is

KCET 2019
26

$$[\mathbf{a}+2 \mathbf{b}-\mathbf{c}, \mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}-\mathbf{c}]=$$

KCET 2019
27
If $|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=144$ and $|\vec{a}|=4$, then the value of $|\vec{b}|$ is
KCET 2018
28
If $\vec{a}$ and $\vec{b}$ are mutually perpendicular unit vectors, then $(3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})$ is equal to
KCET 2018
29
If the vector $a \hat{i}+\hat{j}+\hat{k} ; \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar $(a \neq b \neq c \neq 1)$, then the value of $a b c-(a+b+c)$ is equal to
KCET 2018
30
If $\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}$ are orthogonal and $|\vec{a}|=|\vec{b}|$, then $(\lambda, \mu)$ is equal to
KCET 2018
31
If $a$ and $\mathbf{b}$ are unit vectors, then angle between $\mathbf{a}$ and $\mathbf{b}$ for $\sqrt{3} \mathbf{a}-\mathbf{b}$ to be unit vector is
KCET 2017
32
If $\mathbf{a}=2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are orthogonal, then value of $\lambda$ is
KCET 2017
33
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are unit vectors such that $a+b+c=0$, then the value of $\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a}$ is equal to
KCET 2017