ExamSIDE
Questions (Powered by ExamGOAL)
Algebra
Quadratic EquationsSequences and SeriesPermutations and CombinationsProbabilitySets and RelationsBinomial TheoremVector AlgebraThree Dimensional GeometryMatrices and DeterminantsStatisticsLinear ProgrammingComplex Numbers
Trigonometry
Trigonometric EquationsProperties of Triangles
Calculus
FunctionsLimits, Continuity and DifferentiabilityApplication of DerivativesDefinite IntegrationArea Under The CurvesDifferential Equations
Coordinate Geometry
Straight Lines and Pair of Straight LinesCircle
Matrices and Determinants
Practice Questions
MCQ (Single Correct Answer)
1

Let $M$ be a $3 \times 3$ matrix with real entries such that

$$ \left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: M\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]\right\}=\left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: x_1+x_2=0=x_2+x_3\right\} $$

What is the value of the determinant of M ?

IAT (IISER) 2023
2
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
IAT (IISER) 2022
3
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
IAT (IISER) 2020
4
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
IAT (IISER) 2020
© 2025 ExamGOAL. All rights reserved.
Privacy PolicyTerms of Service