Algebra
Quadratic EquationsSequences and SeriesPermutations and CombinationsProbabilitySets and RelationsBinomial TheoremVector AlgebraThree Dimensional GeometryMatrices and DeterminantsStatisticsLinear ProgrammingComplex NumbersTrigonometry
Trigonometric EquationsProperties of TrianglesCalculus
FunctionsLimits, Continuity and DifferentiabilityApplication of DerivativesDefinite IntegrationArea Under The CurvesDifferential EquationsCoordinate Geometry
Straight Lines and Pair of Straight LinesCircleMatrices and Determinants
Practice QuestionsMCQ (Single Correct Answer)
1
Let $M$ be a $3 \times 3$ matrix with real entries such that
$$ \left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: M\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]\right\}=\left\{\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]: x_1+x_2=0=x_2+x_3\right\} $$
What is the value of the determinant of M ?
IAT (IISER) 2023
2
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
IAT (IISER) 2022
3
If $A=\left[\begin{array}{lll}1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right]$, then the determinant of $I-A+A^2-A^3+A^4-\cdots+A^{2020}$ is
IAT (IISER) 2020
4
The number of skew-symmetric matrices $A=\left[a_i j\right]_{3 \times 3}$, where $a_i j \in\{-3,-2,-1,0,1,2,3\}$ is:
IAT (IISER) 2020