Heat Transfer
Fin Design and Transient Heat Conduction
Marks 1Marks 2Marks 5
Convection
Marks 1Marks 2
Heat Exchangers
Marks 1Marks 2Marks 5
1
GATE ME 2017 Set 1
Numerical
+2
-0
Two black surfaces, $$AB$$ and $$BC,$$ of lengths $$5m$$ and $$6m,$$ respectively, are oriented as shown. Both surfaces extend infinitely into the third dimension. Given that view factor $${F_{12}} = 0.5,\,\,{T_1} = 800\,\,K,\,\,{T_2} = 600\,\,K,$$ $${T_{surrounding}} = 300\,\,K$$ and Stefan Boltzmann constant, $$\sigma = 5.67 \times {10^{ - 8}}\,\,W/\left( {{m^2}{K^4}} \right),$$ the heat transfer rate from Surface $$2$$ to the surrounding environment is ____________ $$kW.$$ GATE ME 2017 Set 1 Heat Transfer - Radiation Question 12 English
Your input ____
2
GATE ME 2016 Set 3
Numerical
+2
-0
Two large parallel plates having a gap of $$10$$ $$mm$$ in between them are maintained at temperatures $${T_1} = 1000\,\,K$$ and $${T_2} = 400\,\,K$$
Given emissivity values, $${\varepsilon _1} = 0.5,\,\,{\varepsilon _2} = 0.25$$ and Stefan-Boltzmann constant $$\sigma = 5.67 \times {10^{ - 8}}\,$$ $$\,W/{m^2}$$-$$K,$$ the heat transfer between the plates (in $$kW/{m^2}$$) is _____________.
Your input ____
3
GATE ME 2016 Set 1
Numerical
+2
-0
An infinitely long furnace of $$0.5m \times 0.4m$$ cross-section is shown in the figure below. Consider all surfaces of the furnace to be black. The top and bottom walls are maintained at temperature $${T_1} = {T_3} = {927^ \circ }C,$$
while the side walls are at temperature $${T_2} = {T_4} = {527^ \circ }C.$$
The view factor, $${F_{1 - 2}}$$ is $$0.26.$$ The net radiation heat loss or gain on side $$1$$ is_________ $$W/m.$$ Stefan-Boltzman constant $$ = \,5.67 \times {10^{ - 8}}$$ $$W/{m^2}$$-$${K^4}$$ GATE ME 2016 Set 1 Heat Transfer - Radiation Question 14 English
Your input ____
4
GATE ME 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The total emissive power of a surface is $$500$$ $$W/{m^2}$$ at a temperature $${T_1}$$ and $$1200$$ $$W/{m^2}$$ at a temperature $${T_2}$$, where the temperatures are in Kelvin. Assuming the emissivity of the surface to be constant, the ratio of the temperatures $${{{T_1}} \over {{T_2}}}$$ is
A
$$0.308$$
B
$$0.416$$
C
$$0.803$$
D
$$0.874$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude