Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2015 Set 1
Numerical
+2
-0
The velocity field on an incompressible flow is given by
$$V = \left( {{a_1}x + {a_2}y + {a_3}z} \right)i + \left( {{b_1}x + {b_2}y + {b_3}z} \right)j\,$$ $$ + \left( {{c_1}x + {c_2}y + {c_3}z} \right)k,\,\,$$
where $${{a_1} = 2}$$ and $${{c_3} = - 4.}$$ The value of $${{b_2}}$$ is ________.
Your input ____
2
GATE ME 2015 Set 3
Numerical
+2
-0
The value of $$\int\limits_C {\left[ {\left( {3x - 8{y^2}} \right)dx + \left( {4y - 6xy} \right)dy} \right],\,\,} $$ (where $$C$$ is the region bounded by $$x=0,$$ $$y=0$$ and $$x+y=1$$) is ________.
Your input ____
3
GATE ME 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The integral $$\,\,\oint\limits_C {\left( {ydx - xdy} \right)\,\,} $$ is evaluated along the circle $${x^2} + {y^2} = {1 \over 4}\,$$ traversed in counter clockwise direction. The integral is equal to
A
$$0$$
B
$$ - {\pi \over 4}$$
C
$$ - {\pi \over 2}$$
D
$$ {\pi \over 4}$$
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $$F = xi + yj + zk$$ defined with respect to a Cartesian coordinate system having $$i, j$$ and $$k$$ as unit base vectors. $$$\int {\int\limits_S {{1 \over 4}\left( {F.n} \right)dA} } $$$

Where $$S$$ is the sphere, $$\,\,{x^2} + {y^2} + {z^2} = 1\,\,$$ and $$n$$ is the outward unit normal vector to the sphere. The value of the surface integral is

A
$$\pi $$
B
$$2$$$$\pi $$
C
$$3$$ $$\pi $$$$/4$$
D
$$4$$ $$\pi $$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude