Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2016 Set 2
Numerical
+1
-0
The minimum number of colours that is sufficient to vertex-colour any planar graph is _____________ .
Your input ____
2
GATE CSE 2014 Set 3
Numerical
+1
-0
let $$G$$ be a group with $$15$$ elements. Let $$L$$ be a subgroup of $$G$$. It is known that $$L \ne G$$ and that the size of $$L$$ is at least $$4$$. The size of $$L$$ is ______.
Your input ____
3
GATE CSE 2014 Set 1
Numerical
+1
-0
The maximum number of edges in a bipartite graph on $$12$$ vertices is _________.
Your input ____
4
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $$G = \left( {V,E} \right)$$ be a directed graph where $$V$$ is the set of vertices and $$E$$ the set of edges. Then which one of the following graphs has the same strongly connected components as $$G$$?
A
$${G_1} = \left( {V,\,\,{E_1}} \right)\,\,\,$$where $$\,\,{E_1} = \left\{ {\left( {u,v} \right) \notin E} \right\}$$
B
$${G_2} = \left( {V,\,\,{E_2}} \right)\,\,\,$$ where $$\,\,\,{E_2} = \left\{ {\left( {u,v} \right) \in E} \right\}$$
C
$${G_3} = \left( {V,\,\,{E_3}} \right)\,\,\,$$ where $$\,\,{E_3} = $$ {$${\left( {u,v} \right)\left| \, \right.}$$ there isa path of length $$ \le 2$$ from $$u$$ to $$v$$ in $$E$$}
D
$${G_4} = \left( {{V_4},\,\,{E_{}}} \right)\,\,\,$$ where $${{V_4}}$$ is the set of vertices in $$G$$ which are not isolated.
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization