Thermodynamics
Calculation of Work and Heat
Marks 1Marks 2
Entropy and Irreversibility
Marks 1Marks 2Marks 5
Properties of Pure Substances
Marks 1Marks 2
Basic Concepts and Zeroth Law
Marks 1Marks 2
First Law of Thermodynamics
Marks 1Marks 2Marks 5
Second Law of Thermodynamics
Marks 1Marks 2
1
GATE ME 2016 Set 3
Numerical
+2
-0
Steam at an initial enthalpy of $$100$$ $$kJ/kg$$ and inlet velocity of $$100$$ $$m/s,$$ enters an insulated horizontal nozzle. It leaves the nozzle at $$200$$ $$m/s.$$ The exit enthalpy (in $$kJ/kg$$) is ___________
Your input ____
2
GATE ME 2016 Set 2
Numerical
+2
-0
A piston-cylinder device initially contains $$0.4\,{m^3}$$ of air (to be treated as an ideal gas) at $$100$$ $$kPa$$ and $${80^ \circ }C.$$ The air is now isothermally compressed to 0.1 m3 . The work done during this process is ________ $$kJ.$$

(Take the sign convention such that work done on the system is negative)

Your input ____
3
GATE ME 2015 Set 2
Numerical
+2
-0
Work is done on an adiabatic system due to which its velocity changes from $$10$$ $$m/s$$ to $$20$$ $$m/s,$$ elevation increases by $$20$$ $$m$$ and temperature increases by $$1$$ $$K$$. The mass of the system is $$10$$ $$kg,$$ $${{C_v} = 100J\left( {kg.K} \right)}$$ and gravitational acceleration is $$10\,\,m/{s^2}.$$ If there is no change in any other component of the energy of the system, the magnitude of total work done (in $$kJ$$) on the system is _______________.
Your input ____
4
GATE ME 2015 Set 1
Numerical
+2
-0
A well insulated rigid container of volume $$1{m^3}$$ contains $$1.0$$ $$kg$$ of an ideal gas $$\left[ {{C_p} =1000\,\,\,J/\left( {kg.K} \right)} \right.$$ and $$\left. {{C_v} = 800J/\left( {kg.K} \right)} \right]$$ at a pressure of $${10^5}\,\,Pa.$$ A stirrer is rotated at constant $$rpm$$ in the container for $$1000$$ rotations and the applied torque is $$100$$ $$N$$-$$m.$$ The final temperature of the gas (in $$K$$) is _______________.
Your input ____
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude