Algorithms
Complexity Analysis and Asymptotic Notations
Marks 1Marks 2
Searching and Sorting
Marks 1Marks 2
Divide and Conquer Method
Marks 1Marks 2
Greedy Method
Marks 1Marks 2
P and NP Concepts
Marks 1Marks 2
Dynamic Programming
Marks 1Marks 2
1
GATE CSE 2025 Set 2
MCQ (Single Correct Answer)
+2
-0.67

An array $A$ of length $n$ with distinct elements is said to be bitonic if there is an index $1=i=n$ such that $A[1 . . i]$ is sorted in the non-decreasing order and $A[i+1 . . n]$ is sorted in the non-increasing order.

Which ONE of the following represents the best possible asymptotic bound for the worstcase number of comparisons by an algorithm that searches for an element in a bitonic array $A$?

A
$\Theta(n)$
B
$\Theta(1)$
C
$\Theta\left(\log ^2 n\right)$
D
$\Theta(\log n)$
2
GATE CSE 2016 Set 2
Numerical
+2
-0
A complete binary min-heap is made by including each integer in $$[1,1023]$$ exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus, the root is at depth $$0.$$ The maximum depth at which integer $$9$$ can appear is ___________.
Your input ____
3
GATE CSE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
An operator $$delete(i)$$ for a binary heap data structure is to be designed to delete the item in the $$i$$-th node. Assume that the heap is implemented in an array and i refers to the $$i$$-th index of the array. If the heap tree has depth $$d$$ (number of edges on the path from the root to the farthest leaf), then what is the time complexity to re-fix the heap efficiently after the removal of the element?
A
$$O\left( 1 \right)$$
B
$$O\left( d \right)$$ but not $$O\left( 1 \right)$$
C
$$O\left( {{2^d}} \right)$$ but not $$O\left( d \right)$$
D
$$O\left( {d{2^d}} \right)$$ but not $$O\left( {{2^d}} \right)$$
4
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Assume that a mergesort algorithm in the worst case takes $$30$$ seconds for an input of size $$64.$$ Which of the following most closely approximates the maximum input size of a problem that can be solved in $$6$$ minutes?
A
$$256$$
B
$$512$$
C
$$1024$$
D
$$2048$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization