Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2022 Set 2
Numerical
+2
-0
Given z = x +iy, i = √-1 C is a circle of radius 2 with the centre at the origin. If the contour C is traversed anticlockwise, then the value of the integral $\frac{1}{2\pi}\int_c\frac{1}{(z-i)(z+4i)}dZ$ is ________ (round off to one decimal place.)
Your input ____
2
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+2
-0.66

The value of the integral

$\rm \oint \left( \frac{6z}{2z^4 - 3z^3 + 7 z^2 - 3z + 5} \right) dz$

evaluated over a counter-clockwise circular contour in the complex plane enclosing only the pole z = i, where 𝑖 is the imaginary unit, is

A
(-1 + i) π
B
(1 + i) π
C
2(1 - i) π
D
(2 + i) π
3
GATE ME 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
If $$f\left( z \right) = \left( {{x^2} + a{y^2}} \right) + ibxy$$ is a complex analytic function of $$z=x+iy,$$
where $${\rm I} = \sqrt { - 1} ,$$ then
A
$$a=-1,b=-1$$
B
$$a=-1, b=2$$
C
$$a=1, b=2$$
D
$$a=2, b=2$$
4
GATE ME 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The value of the integral $$\int\limits_{ - \infty }^\infty {{{\sin x} \over {{x^2} + 2x + 2}}} dx$$
evaluated using contour integration and the residue theorem is
A
$$ - \pi {{\sin \left( 1 \right)} \over e}$$
B
$$ - \pi {{\cos \left( 1 \right)} \over e}$$
C
$${{\sin \left( 1 \right)} \over e}$$
D
$${{\cos \left( 1 \right)} \over e}$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude