Fluid Mechanics
Fluid Properties
Marks 1Marks 2
Boundary Layer
Marks 1Marks 2Marks 5
Turbulent Flow
Marks 1Marks 2Marks 5
Fluid Kinematics
Marks 1Marks 2
1
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
For steady, fully developed flow inside a straight pipe of diameter $$D,$$ neglecting gravity effects, the pressure drop $$\Delta p$$ over a length $$L$$ and the wall shear stress $${\tau _w}$$ are related by
A
$${\tau _w} = {{\Delta pD} \over {4L}}$$
B
$${\tau _w} = {{\Delta p{D^2}} \over {4{L^2}}}$$
C
$${\tau _w} = {{\Delta pD} \over {2L}}$$
D
$${\tau _w} = {{4\Delta pL} \over D}$$
2
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
Consider steady laminar incompressible axi-symmetric fully developed viscous flow through a straight circular pipe of constant cross - sectional area at a Reynolds number of $$5.$$ The ratio of inertia force to viscous force on a fluid particle is
A
$$5$$
B
$${1 \over 5}$$
C
$$0$$
D
$$\infty $$
3
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
Oil flows through a $$200mm$$ diameter horizontal cast iron pipe (friction factor, $$f=0.0225$$) of length $$500m.$$ The volumetric flow rate is $$0.2{m^3}/s.$$ The head loss (in $$m$$) due to friction is (assume $$g=9.81$$ $$m/{s^2}$$)
A
$$116.18$$
B
$$0.116$$
C
$$18.22$$
D
$$232.36$$
4
GATE ME 1994
MCQ (Single Correct Answer)
+1
-0.3
Prandtl’s mixing length is turbulent flow signifies
A
the average distance perpendicular to the mean flow covered by the mixing particles.
B
the ratio of mean free path to characteristic length of the flow field
C
the wavelength corresponding to the lowest frequency present in the flow field
D
the magnitude of turbulent kinetic energy.
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude