Compiler Design
Lexical Analysis
Marks 1Marks 2
Syntax Directed Translation
Marks 1Marks 2
Code Generation and Optimization
Marks 1Marks 2
1
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6

Consider the grammar with the following translation rules and E as the start symbol.

$$\eqalign{ & E \to {E_1}\# T\,\,\left\{ {E.value = {E_1}.value*T.value} \right\} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,|T\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {E.value = T.value} \right\} \cr & T \to {T_1}\& F\,\,\,\left\{ {T.value = {T_1}.value*F.value} \right\} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,|\,F\,\,\,\,\,\,\,\,\,\,\,\left\{ {T.value = F.value} \right\} \cr & F \to num\,\,\,\,\,\,\,\left\{ {F.value = num.value} \right\} \cr} $$

Compute E.value for the root of the parse tree for the expression:
2 # 3 & 5 # 6 & 4.

A
200
B
180
C
160
D
40
2
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6

Consider the grammar shown below.

$$\eqalign{ & S \to CC \cr & C \to cC\,|\,d \cr} $$

This grammar is

A
LL(1)
B
SLR(1) but not LL(1)
C
LALR(1) but not SLR(1)
D
LR(1) but not LALR(1)
3
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6

Consider the translation scheme shown below

$$\eqalign{ & S \to TR \cr & R \to + T\left\{ {pr{\mathop{\rm int}} (' + ');} \right\}\,R\,|\,\varepsilon \cr & T \to num\,\left\{ {pr{\mathop{\rm int}} (num.val);} \right\} \cr} $$

Here num is a token that represents an integer and num.val represents the corresponding integer value. For an input string '9 + 5 + 2', this translation scheme will print

A
9 + 5 + 2
B
9 5 + 2 +
C
9 5 2 + +
D
+ + 9 5 2
4
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6

Consider the grammar shown below

$$\eqalign{ & S \to iEtSS'\,|\,\,a \cr & S' \to eS\,|\,\,\varepsilon \cr & E \to b \cr} $$

In the predictive parse table, $$M$$, of this grammar, the entries $$M\left[ {S',e} \right]$$ and $$M\left[ {S',\phi } \right]$$ respectively are

A
$$\{ \,S' \to eS\,\} $$ and $$\{ \,S' \to \varepsilon \,\} $$
B
$$\{ \,S' \to eS\,\} $$ and $$\{ \,\,\,\} $$
C
$$\{ \,S' \to \varepsilon \,\} $$ and $$\{ \,S' \to \varepsilon \,\} $$
D
$$\{ \,S' \to eS\,,S' \to \varepsilon \} $$ and $$\{ \,S' \to \varepsilon \,\} $$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization