Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2020
MCQ (Single Correct Answer)
+1
-0.33
Consider the functions

I. $${e^{ - x}}$$

II. $${x^2} - \sin x$$

III. $$\sqrt {{x^3} + 1} $$

Which of the above functions is/are increasing everywhere in [0,1]?
A
III only
B
II and III only
C
II only
D
I and III only
2
GATE CSE 2019
MCQ (Single Correct Answer)
+1
-0.33
Compute $$\mathop {\lim }\limits_{x \to 3} {{{x^4} - 81} \over {2{x^2} - 5x - 3}}$$
A
1
B
Limit does not exits
C
$${{53} \over {12}}$$
D
$${{108} \over {7}}$$
3
GATE CSE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
If $$f\left( x \right)\,\,\, = \,\,\,R\,\sin \left( {{{\pi x} \over 2}} \right) + S.f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = {{2R} \over \pi }} ,$$ then the constants $$R$$ and $$S$$ are respectively.
A
$${{2 \over \pi }}$$ and $${{16 \over \pi }}$$
B
$${{2 \over \pi }}$$ and $$0$$
C
$${{4 \over \pi }}$$ and $$0$$
D
$${{4 \over \pi }}$$ and $${{16 \over \pi }}$$
4
GATE CSE 2017 Set 2
Numerical
+1
-0
Consider a quadratic equation $${x^2} - 13x + 36 = 0$$ with coefficients in a base $$b.$$ The solutions of this equation in the same base $$b$$ are $$x=5$$ and $$x=6$$. Then $$b=$$ ______.
Your input ____
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization