Theory of Computation
Finite Automata and Regular Language
Marks 1Marks 2Marks 5
Push Down Automata and Context Free Language
Marks 1Marks 2
Undecidability
Marks 1Marks 2
Recursively Enumerable Language and Turing Machine
Marks 1Marks 2
1
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Consider the following languages:

$$\,\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m + p = n + q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,\,\,{\rm II}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m = n$$ and $$p=q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,{\rm III}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m = n = p$$ and $$p \ne q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,{\rm IV}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|mn = p + q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$

Which of the languages above are context-free?

A
$${\rm I}$$ and $${\rm IV}$$ only
B
$${\rm I}$$ and $${\rm II}$$ only
C
$${\rm II}$$ and $${\rm III}$$ only
D
$${\rm II}$$ and $${\rm IV}$$ only
2
GATE CSE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider the following context-free grammars:
$$\eqalign{ & {G_1}:\,\,\,\,\,S \to aS|B,\,\,B \to b|bB \cr & {G_2}:\,\,\,\,\,S \to aA|bB,\,\,A \to aA|B|\varepsilon ,\,\,B \to bB|\varepsilon \cr} $$

Which one of the following pairs of languages is generated by $${G_1}$$ and $${G_2}$$, respectively?

A
$$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.$$ or $$\,\,\,\,$$$$n > \left. 0 \right\}$$ and $$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.$$ and $$\,\,\,\,n > \left. 0 \right\}\,\,\,\,$$
B
$$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.$$ and $$\,\,\,n > \left. 0 \right\}\,\,\,\,$$ and $$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.$$ or $$\,\,\,\,n \ge \left. 0 \right\}$$
C
$$\left\{ {{a^m}{b^n}|m \ge 0\,\,\,\,} \right.$$ or $$\,\,\,\,n > \left. 0 \right\}\,\,\,\,$$ and $$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.\,$$ and $$\,\,\,\,n > \left. 0 \right\}\,\,\,\,$$
D
$$\left\{ {{a^m}{b^n}|m \ge 0\,\,\,\,} \right.$$ and $$\,\,\,n > \left. 0 \right\}\,\,\,\,$$ and $$\left\{ {{a^m}{b^n}|m > 0\,\,\,\,} \right.\,$$ or $$\,\,\,\,n > \left. 0 \right\}\,\,\,\,$$
3
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which of the following languages are context-free? $$$\eqalign{ & {L_1} = \left\{ {{a^m}{b^n}{a^n}{b^m}|m,n \ge 1} \right\} \cr & {L_2} = \left\{ {{a^m}{b^n}{a^m}{b^n}|m,n \ge 1} \right\} \cr & {L_3} = \left\{ {{a^m}{b^n}|m = 2n + 1} \right\} \cr} $$$
A
$${L_1}$$ and $${L_2}$$ only
B
$${L_1}$$ and $${L_3}$$ only
C
$${L_2}$$ and $${L_3}$$ only
D
$${L_3}$$ only
4
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the following languages over the alphabet $$\sum { = \left\{ {0,\,1,\,c} \right\}:} $$
$$\eqalign{ & {L_1} = \left\{ {{0^n}\,{1^n}\,\left| {n \ge } \right.0} \right\} \cr & {L_2} = \left\{ {wc{w^r}\,\left| {w \in \left\{ {0,\,1} \right\}{}^ * } \right.} \right\} \cr & {L_3} = \left\{ {w{w^r}\,\left| {w \in \left\{ {0,\,1} \right\}{}^ * } \right.} \right\} \cr} $$

Here, $${w^r}$$ is the reverse of the string $$w.$$ Which of these languages are deterministic Context- free languages?

A
None of the languages
B
$$(B)$$ Only $${L_1}$$
C
Only $${L_1}$$ and $${L_2}$$
D
All the three languages.
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization