Theory of Machines
Gears and Gear Trains
Marks 1Marks 2Marks 5
Analysis of Plane Mechanisms
Marks 1Marks 2
1
GATE ME 2016 Set 3
Numerical
+2
-0
A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of $$\sqrt {{{3k} \over m}} ,$$ the ratio of the amplitude of steady state response to the static deflection of the spring is __________ GATE ME 2016 Set 3 Theory of Machines - Vibrations Question 17 English
Your input ____
2
GATE ME 2016 Set 2
Numerical
+2
-0
The system shown in the figure consists of block A of mass 5 kg connected to a spring through a massless rope passing over pulley B of radius r and mass 20 kg. The spring constant k is 1500 N/m. If there is no slipping of the rope over the pulley, the natural frequency of the system is_____________ rad/s. GATE ME 2016 Set 2 Theory of Machines - Vibrations Question 18 English
Your input ____
3
GATE ME 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A single-degree-freedom spring mass system is subjected to a sinusoidal force of $$10$$ N amplitude and frequency $$\omega $$ along the axis of the spring. The stiffness of the spring is $$150$$N/m, damping factor is $$0.2$$ and the undamped natural frequency is $$10$$$$\omega $$. At steady state, the amplitude of vibration (in m) is approximately
A
$$0.05$$
B
$$0.07$$
C
$$0.70$$
D
$$0.90$$
4
GATE ME 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A mobile phone has a small motor with an eccentric mass used for vibrator mode. The location of the eccentric mass on motor with respect to center of gravity $$(CG)$$ of the mobile and the rest of the dimensions of the mobile phone are shown. The mobile is kept on a flat horizontal surface. GATE ME 2015 Set 1 Theory of Machines - Vibrations Question 24 English

Given in addition that the eccentric mass = $$2$$ grams, eccentricity = $$2.19$$ mm, mass of the mobile = $$90$$ grams, g = $$9.81$$ $$m/{s^2}.$$ Uniform speed of the motor in $$RPM$$ for which the mobile will get just lifted off the ground at the end $$Q$$ is approximately

A
$$3000$$
B
$$3500$$
C
$$4000$$
D
$$4500$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude