Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 1999
Subjective
+5
-0
(a) Show that the formula $$\left[ {\left( { \sim p \vee Q} \right) \Rightarrow \left( {q \Rightarrow p} \right)} \right]$$ is not a tautology.

(b) Let $$A$$ be a tautology and $$B$$ be any other formula. Prove that $$\left( {A \vee B} \right)$$ is a tautology.

2
GATE CSE 1999
Subjective
+5
-0
Let $$\left( {\left\{ {p,\,q} \right\},\, * } \right)$$ be a semi group where $$p * p = q$$. Show that: (a) $$p * q = q * p,$$, and (b) $$q * q = q$$
3
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
4
GATE CSE 1992
Subjective
+5
-0
Uses Modus ponens $$\left( {A,\,\,A \to B\,|\,\, = B} \right)$$ or resolution to show that the following set is inconsistent:

(1) $$Q\left( x \right) \to P\left( x \right)V \sim R\left( a \right)$$
(2) $$R\left( a \right) \vee \sim Q\left( a \right)$$
(3) $$Q\left( a \right)$$
(4) $$ \sim P\left( y \right)$$
where $$x$$ and $$y$$ are universally quantifies variables, $$a$$ is a constant and $$P, Q, R$$ are monadic predicates.

GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization