Fluid Mechanics
Fluid Properties
Marks 1Marks 2
Boundary Layer
Marks 1Marks 2Marks 5
Turbulent Flow
Marks 1Marks 2Marks 5
Fluid Kinematics
Marks 1Marks 2
1
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of $$120$$ $$m$$ from the centre of the whirlpool. The whirlpool can be described by the following velocitry distribution ;
$${V_r} = - \left( {{{60 \times {{10}^3}} \over {2\pi r}}} \right)m/s$$
and $${V_\theta } = - \left( {{{300 \times {{10}^3}} \over {2\pi r}}} \right)m/s.$$

Where $$r$$ (in meters) is the distance from the centre of the whirlpool . What will be the distance of the leaf from the centre when it has moved through half a revolution?

A
$$48$$ $$m$$
B
$$64$$ $$m$$
C
$$120$$ $$m$$
D
$$142$$ $$m$$
2
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
For a fluid flow through a divergent pipe of length $$L$$ having inlet and outlet radii of $${R_1}$$ and $${R_2}$$ respectively and a constant flow rate of $$Q,$$ assuming the velocity to be axial and uniform at any cross- section , the acceleration at the exit is
A
$${{2Q\left( {{R_1} - {R_2}} \right)} \over {\pi LR_2^3}}$$
B
$${{2{Q^2}\left( {{R_1} - {R_2}} \right)} \over {\pi LR_2^3}}$$
C
$${{2{Q^2}\left( {{R_1} - {R_2}} \right)} \over {{\pi ^2}L{R_2}^5}}$$
D
$${{2{Q^2}\left( {{R_2} - {R_1}} \right)} \over {{\pi ^2}L{R_2}^5}}$$
3
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A closed cylinder having a radius $$R$$ and height $$H$$ is filled with oil of density $$\rho .$$ If the cylinder is rotated about its axis at an angular velocity of $$\omega $$ , then thrust at the bottom of the cylinder is
A
$$\pi {R^2}\,\rho gH$$
B
$$\pi {R^2} + {{\rho {\omega ^2}{R^2}} \over 4}$$
C
$$\pi {R^2} + \left( {\rho {\omega ^2}\,{R^2} + \rho gH} \right)$$
D
$$\pi {R^2}\left( {{{\rho {\omega ^2}{R^2}} \over 4} + \rho gH} \right)$$
4
GATE ME 2001
MCQ (Single Correct Answer)
+2
-0.6
The $$2$$ - $$D$$ flow with, velocity $$\overrightarrow v = \left( {x + 2y + 2} \right)\overrightarrow i + \left( {4 - y} \right)\overrightarrow j $$ is
A
Compressible and irrotational
B
Compressible and not irrotational
C
Inompressible and
D
Inompressible and not irrotational
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude