1
If $f(x)$ is a quadratic function such that $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$, then $\sqrt{f\left(\frac{2}{3}\right)+f\left(\frac{3}{2}\right)}=$
2
$f(x)=a x^{2}+b x+c$ is an even function and
$g(x)=p x^{3}+q x^{2}+r x$ is an odd function.
If $h(x)=f(x)+g(x)$ and $h(-2)=0$, then $8 p+4 q+2 r=$
3
If $1 \cdot 3 \cdot 5+3 \cdot 5 \cdot 7+5 \cdot 7 \cdot 9 \ldots$ to $n$ terms $=n(n+1) f(n)$, then $f(2)=$
4
$A=\left[\begin{array}{ll}1 & 2 \\\\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}x & y \\\\ 1 & 2\end{array}\right]$ are two matrices such that $(A+B)(A-B)=A^{2}-B^{2}$ If $C=\left[\begin{array}{ll}x & 2 \\\\ 1 & y\end{array}\right]$, then trace $(C)=$
5
If $x=k$ satisfies the equation $\left|\begin{array}{ccc}x-2 & 3 x-3 & 5 x-5 \\\\ x-4 & 3 x-9 & 5 x-25 \\\\ x-8 & 3 x-27 & 5 x-125\end{array}\right|=0$, then $x=k$ also satisfies the equation
6
If $A$ is a non-singular matrix, then $\operatorname{adj}\left(A^{-1}\right)=$
7
If the homogeneous system of linear equations $x-2 y+3 z=0,2 x+4 y-5 z=0,3 x+\lambda y+\mu z=0$ has non-trivial solution, then $8 \mu+11 \lambda=$
8
If $z=\frac{(2-i)(1+i)^{3}}{(1-i)^{2}}$, then $\arg (z)=$
9
$z=x+i y$ and the point $P$ represents $z$ in the argand plane. If the amplitude of $\left(\frac{2 z-i}{z+2 i}\right)$ is $\frac{\pi}{4}$, then the equation of the locus of $P$ is
10
$\alpha, \beta$ are the roots of the equation $x^{2}+2 x+4=0$. If the point representing $\alpha$ in the argand diagram lies in the 2nd quadrant and $\alpha^{2024}-\beta^{2024}=i k,(i=\sqrt{-1})$, then $k=$
11
If $\alpha$ is a root of the equation $x^{2}-x+1=0$, then $\left(\alpha+\frac{1}{\alpha}\right)^{3}+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{3}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)^{3}+\left(\alpha^{4}+\frac{1}{\alpha^{4}}\right)^{3}=$
12
$\alpha, \beta$ are the real roots of the equation $x^{2}+a x+b=0$. If $\alpha+\beta=\frac{1}{2}$ and $\alpha^{3}+\beta^{3}=\frac{37}{8}$, then $a-\frac{1}{b}=$
13
The solution set of the inequation $\sqrt{x^{2}+x-2} > (1-x)$ is
14
If $\alpha, \beta, \gamma$ are the roots of the equation $4 x^{3}-3 x^{2}+2 x-1=0$, then $\alpha^{3}+\beta^{3}+\gamma^{3}=$
15
The equation $16 x^{4}+16 x^{3}-4 x-1=0$ has a multiple root. If $\alpha, \beta, \gamma, \delta$ are the roots of this equation, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}+\frac{1}{\delta^{4}}=$
16
The sum of all the 4-digit numbers formed by taking all the digits from $0,3,6,9$ without repetition is
17
The number of ways in which 6 distinct things can be distributed into 2 boxes so that no box is empty is
18
Number of ways in which the number 831600 can be split into two factors which are relatively prime is
19
The coefficient of $x y^{2} z^{3}$ in the expansion of $(x-2 y+3 z)^{3}$ is
20
The set of all real values of $x$ for which the expansion of $\left(125 x^{2}-\frac{27}{x}\right)^{\frac{-2}{3}}$ is valid, is
21
If $\frac{x^{2}}{2 x^{4}+7 x^{2}+6}=\frac{A x+B}{x^{2}+a}+\frac{C x+D}{a x^{2}+3}$, then $A+B+C-2 D=$
22
If $(\sin \theta-\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=5$ and $\theta$ lies in the third quadrant, then $(\sin \theta+\cos \theta)^{3}=$
23
If $0 < B < A < \frac{\pi}{4}, \cos ^{2} B-\sin ^{2} A=\frac{\sqrt{3}+1}{4 \sqrt{2}}$ and $2 \cos A \cos B=\frac{1+\sqrt{2}+\sqrt{3}}{2 \sqrt{2}}$, then $\cos ^{2} \frac{4 B}{3}-\sin ^{2} \frac{4 A}{5}=$
24
If $\theta$ is an acute angle and $2 \sin ^{2} \theta=\cos ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}$, then $\theta=$
25
If $2 \tan ^{2} \theta-4 \sec \theta+3=0$, then $2 \sec \theta=$
26
If $\sin ^{-1} x-\cos ^{-1} 2 x=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$, then $\tan ^{-1} x+\tan ^{-1}\left(\frac{x}{x+1}\right)=$
27
$\operatorname{sech}^{-1}\left(\frac{3}{5}\right)-\tanh ^{-1}\left(\frac{3}{5}\right)=$
28
In a $\triangle A B C$, if $a=5, b=3, c=7$, then $\sqrt{\frac{\sin (A-B)}{\sin (A+B)}}=$
29
In a $\triangle A B C$, if $r_{1}=6, r_{2}=9, r_{3}=18$, then $\cos A=$
30
$2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ are the position vectores of two points $A$ and $B$ respectively and $C$ divides $A B$ in the ratio $3: 2$ : If $3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is the position of vector of a point $D$, then the unit vector in the direction of $C D$ is
31
A plane $\pi$ passing through the points $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}, 3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$ is parallel to the vector $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$. If a line joining the points $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ and $\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ intersects the plane $\pi$ at the point $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$, then $a+b+2 c=$
32
A unit vector $\hat{\mathbf{e}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ is coplanar with the vectors $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$. If $\hat{\mathbf{e}}$ is perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then $2 a^{2}+3 b^{2}+4 c^{2}=$
33
$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{c}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ are three vectors. If $\hat{\mathbf{d}}$ is a normal to the plane of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ and d. $\hat{\mathbf{c}}=2$, then $|\hat{\mathbf{d}}|=$
34
$\hat{\mathbf{r}} .(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ and $\hat{\mathbf{r}} .(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})=3$ are two planes. A plane $\pi$ passing through the line of intersection of these two planes, passes through the point $(0,1,2)$. If the equation of $\pi$ is $\hat{\mathbf{r}} .(a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}})=m$, then $\frac{b c}{a^{2}}=$
35
The variance of the data: $1,2,3,5,8,13,17$ is approximately
36
The numbers $2,3,5,7,11,13$ are written on six distinct paper chits. If 3 of them are chosen at random, then the probability that the sum of the numbers on the obtained chits is divisible by 3 , is
37
If 4 letters are selected at random from the letters of the word PROBABILITY, then the probability of getting a combination of letters in which atleast one letter is repeated is
38
If two dice are rolled, then the probability of getting a multiple of 3 as the sum of the numbers appeared on the top faces of the dice, if it is known that their sum is an odd number, is
39
If a random variable $X$ has the following probability distribution, then its variance is
X = x | 1 | 3 | 5 | 2 |
P(X = x) | $3 K^2$ | K | $K^2$ | 2K |
40
The mean and variance of a binomial variate $X$ are $\frac{16}{5}$ and $\frac{48}{25}$ respectively. IfP $(X > 1)=1-K\left(\frac{3}{5}\right)^{7}$, then $5 K=$
41
$P$ and $Q$ are the points of trisection of the line segment joining the points $(3,-7)$ and $(-5,3)$. If $P Q$ subtends right angle at a variable point $R$, then the locus of $R$ is
42
$(a, b)$ is the point to which the origin has to be shifted by translation of axes so as to remove the first-degree terms from the equation $2 x^{2}-3 x y+4 y^{2}+5 y-6=0$. If the angle by which the axes are to be rotated in positive direction about the origin to remove the $x y$-term from the equation $a x^{2}+23 a b x y+b y^{2}=0$ is $\theta$, then $\tan 2 \theta=$
43
$A(1,-2), B(-2,3), C(-1,-3)$ are the vertices of a $\triangle A B C . L_{1}$ is the perpendicular drawn from $A$ to $B C$ and $L_{2}$ is the perpendicular bisector of $A B$. If $(l, m)$ is the point of intersection of $L_{1}$ and $L_{2}$, then $26 m-3=$
44
The area of the parallelogram formed by the lines $L_{1} \equiv \lambda x+4 y+2=0, L_{2} \equiv 3 x+4 y-3=0$, $L_{3} \equiv 2 x+\mu y+6=0, L_{4} \equiv 2 x+y+3=0$, where $L_{1}$ is parallel to $L_{2}$ and $L_{3}$ is parallel to $L_{4}$ is
45
If $A(1,2), B(2,1)$ are two vertices of an acute angled triangle and $S(0,0)$ is its circumcenter, then the angle subtended by $A B$ at the third vertex is
46
If the angle between the pair of lines given by the equation $a x^{2}+4 x y+2 y^{2}=0$ is $45^{\circ}$, then the possible values of $a$
47
A circle passing through the points $(1,1)$ and $(2,0)$ touches the line $3 x-y-1=0$. If the equation of this circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$, then a possible value of $g$ is
48
A circle passes through the points $(2,0)$ and $(1,2)$. If the power of the point $(0,2)$ with respect to this circle is 4 , then the radius of the circle is
49
$x-2 y-6=0$ is a normal to the circle $x^{2}+y^{2}+2 g x+2 f y-8=0$. If the line $y=2$ touches this circle, then the radius of the circle can be
50
The line $x+y+1=0$ intersects the circle $x^{2}+y^{2}-4 x+2 y-4=0$ at the points $A$ and $B$. If $M(a, b)$ is the mid-point of $A B$, then $a-b=$
51
A circle $S$ passes through the points of intersection of the circles $x^{2}+y^{2}-2 x-3=0$ and $x^{2}+y^{2}-2 y=0$. If $x+y+1=0$ is a tangent to the circle $S$, then equation of $S$ is
52
If the common chord of the circles $x^{2}+y^{2}-2 x+2 y+1=0$ and $x^{2}+y^{2}-2 x-2 y-2=0$ is the diameter of a circle $S$, then the center of the circles is
53
$(1,1)$ is the vertex and $x+y+1=0$ is the directrix of a parabola. If $(a, b)$ is its focus and $(c, d)$ is the point of intersection of the directrix and the axis of the parabola, then $a+b+c+d=$
54
The axis of a parabola is parallel to $Y$-axis. If this parabola passes through the points $(1,0),(0,2),(-1,-1)$ and its equation is $a x^{2}+b x+c y+d=0$, then $\frac{a d}{b c}=$
55
If the focus of an ellipse is $(-1,-1)$, equation of its directrix corresponding to this focus is $x+y+1=0$ and its eccentricity is $\frac{1}{\sqrt{2}}$, then the length of its major axis is
56
If the normal drawn at the point $(2,-1)$ to the ellipse $x^{2}+4 y^{i}=8$ meets the ellipse again at $(a, b)$, then $17 a=$
57
$P(\theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{9}=1, S$ is its $\mathrm{fOO}_{4 /}$ lying on the positive $X$-axis and $Q=(0,1)$. If $S Q=\sqrt{26}$ and $S P=6$, then $\theta=$
58
If $A(-2,4, a), B(1, b, 3), C(c, 0,4)$ and $D(-5,6,1)$ are collinear points, then $a+b+c=$
59
$A(1,-2,1)$ and $B(2,-1,2)$ are the end points of a line segment. If $D(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from $C(1,2,3)$ to $A B$, then $\alpha^{2}+\beta^{2}+\gamma^{2}=$
60
The foot of the perpendicular drawn from the point $(-2,-1,3)$ to a plane $\pi$ is $(1,0,-2)$. If $a, b, c$ are the intercepts made by the plane $\pi$ on $X, Y, Z$-axis respectively, then $3 a+b+5 c=$
61
$\lim\limits_{x \rightarrow \frac{3}{2}} \frac{\left(4 x^{2}-6 x\right)\left(4 x^{2}+6 x+9\right)}{\sqrt[3]{2 x}-\sqrt[3]{3}}=$
62
If the real valued function $f(x)=\int \frac{\left(4^{x}-1\right)^{4} \cot (x \log 4)}{\sin (x \log 4) \log \left(1+x^{2} \log 4\right)}, \quad$ if $x \neq 0$ is continuous at $x=0$, then $e^{k}=$
63
A function $f: R \rightarrow R$ is such that $y f(x+y)+\cos m x y=1+y f(x)$. If $m=2$, then $f^{\prime}(x)=$
64
If $y=\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\ldots \infty,}}}$ then $\frac{d y}{d x}=$
65
If $y=\tan ^{-1}\left[\frac{\sin ^{3}(2 x)-3 x^{2} \sin (2 x)}{3 x \sin ^{2}(2 x)-x^{3}}\right]$, then $\frac{d y}{d x}=$
66
Derivative of $(\sin x)^{x}$ with respect to $x^{(\sin x)}$ is
67
For a given function $y=f(x), \delta y$ denote the actual error in $y$ corresponding to actual error $\delta x$ in $x$ and $d y$ denotes the approximately value of $\delta y$. If $y=f(x)=2 x^{2}-3 x+4$ and $\delta x=0.02$, then the value of $\delta y-d y$ when $x=5$ is
68
The length of the normal drawn at $t=\frac{\pi}{4}$ on the curve $x=2(\cos 2 t+t \sin 2 t), y=4(\sin 2 t+t \cos 2 t)$ is
69
If Water is poured into a cylindrical tank of radius 3.5 ft at the rate of $1 \mathrm{cu} \mathrm{ft} / \mathrm{min}$, then the rate at which the level of the water in the tank increases (in $\mathrm{ft} / \mathrm{min}$ ) is
70
$y=2 x^{3}-8 x^{2}+10 x-4$ is a function defined on [1,2]. If the tangent drawn at a point $(a, b)$ on the graph of this function is parallel to X-axis $a \in(1,2)$, then $a=$
71
If $m$ and $M$ are respectively the absolute minimum and absolute maximum values of a function $f(x)=2 x^{3}+9 x^{2}+12 x+1$ defined on $[-3,0]$, then $m+M=$
72
$\int \frac{\sec x}{3(\sec x+\tan x)+2} d x=$
73
$\int \frac{d x}{4+3 \cot x} d x=$
74
$\int \frac{d x}{(x+1) \sqrt{x^{2}+4}}=$
75
If $\int e^{x}\left(x^{3}+x^{2}-x+4\right) d x=e^{x} f(x)+c$, then $f(1)=$
76
$\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}} \frac{d x}{\sec ^{2} x+\left(\tan ^{2024} x-1\right)\left(\sec ^{2} x-1\right)}=$
77
$\int_{-\pi / 15}^{\pi / 5} \frac{\cos 5 x}{1+e^{5 x}} d x=$
78
The area of the region (in sq units) enclosed by the curves $y=8 x^{3}-1, y=0, x=-1$ and $x=1$ is
79
If the equation of the curve which passes through the point $(1,1)$ satisfies the differential equation $\frac{d y}{d x}=\frac{2 x-5 y+3}{5 x+2 y-3}$, then the equation of that curve is
80
The general solution of the differential equation $\left(6 x^{2}-2 x y-18 x+3 y\right) d x-\left(x^{2}-3 x\right) d y=0$ is