2025
JEE Main 2025 (Online) 8th April Evening ShiftJEE Main 2025 (Online) 7th April Evening ShiftJEE Main 2025 (Online) 7th April Morning ShiftJEE Main 2025 (Online) 4th April Evening ShiftJEE Main 2025 (Online) 4th April Morning ShiftJEE Main 2025 (Online) 3rd April Evening ShiftJEE Main 2025 (Online) 3rd April Morning ShiftJEE Main 2025 (Online) 2nd April Evening ShiftJEE Main 2025 (Online) 2nd April Morning ShiftJEE Main 2025 (Online) 29th January Evening ShiftJEE Main 2025 (Online) 29th January Morning ShiftJEE Main 2025 (Online) 28th January Evening ShiftJEE Main 2025 (Online) 28th January Morning ShiftJEE Main 2025 (Online) 24th January Evening ShiftJEE Main 2025 (Online) 24th January Morning ShiftJEE Main 2025 (Online) 23rd January Evening ShiftJEE Main 2025 (Online) 23rd January Morning ShiftJEE Main 2025 (Online) 22nd January Evening ShiftJEE Main 2025 (Online) 22nd January Morning Shift
2024
JEE Main 2024 (Online) 9th April Evening ShiftJEE Main 2024 (Online) 9th April Morning ShiftJEE Main 2024 (Online) 8th April Evening ShiftJEE Main 2024 (Online) 8th April Morning ShiftJEE Main 2024 (Online) 6th April Evening ShiftJEE Main 2024 (Online) 6th April Morning ShiftJEE Main 2024 (Online) 5th April Evening ShiftJEE Main 2024 (Online) 5th April Morning ShiftJEE Main 2024 (Online) 4th April Evening ShiftJEE Main 2024 (Online) 4th April Morning ShiftJEE Main 2024 (Online) 1st February Evening ShiftJEE Main 2024 (Online) 1st February Morning ShiftJEE Main 2024 (Online) 31st January Evening ShiftJEE Main 2024 (Online) 31st January Morning ShiftJEE Main 2024 (Online) 30th January Evening ShiftJEE Main 2024 (Online) 30th January Morning ShiftJEE Main 2024 (Online) 29th January Evening ShiftJEE Main 2024 (Online) 29th January Morning ShiftJEE Main 2024 (Online) 27th January Evening ShiftJEE Main 2024 (Online) 27th January Morning Shift
2023
JEE Main 2023 (Online) 15th April Morning ShiftJEE Main 2023 (Online) 13th April Evening ShiftJEE Main 2023 (Online) 13th April Morning ShiftJEE Main 2023 (Online) 12th April Morning ShiftJEE Main 2023 (Online) 11th April Evening ShiftJEE Main 2023 (Online) 11th April Morning ShiftJEE Main 2023 (Online) 10th April Evening ShiftJEE Main 2023 (Online) 10th April Morning ShiftJEE Main 2023 (Online) 8th April Evening ShiftJEE Main 2023 (Online) 8th April Morning ShiftJEE Main 2023 (Online) 6th April Evening ShiftJEE Main 2023 (Online) 6th April Morning ShiftJEE Main 2023 (Online) 1st February Evening ShiftJEE Main 2023 (Online) 1st February Morning ShiftJEE Main 2023 (Online) 31st January Evening ShiftJEE Main 2023 (Online) 31st January Morning ShiftJEE Main 2023 (Online) 30th January Evening ShiftJEE Main 2023 (Online) 30th January Morning ShiftJEE Main 2023 (Online) 29th January Evening ShiftJEE Main 2023 (Online) 29th January Morning ShiftJEE Main 2023 (Online) 25th January Evening ShiftJEE Main 2023 (Online) 25th January Morning ShiftJEE Main 2023 (Online) 24th January Evening ShiftJEE Main 2023 (Online) 24th January Morning Shift
2022
JEE Main 2022 (Online) 29th July Evening ShiftJEE Main 2022 (Online) 29th July Morning ShiftJEE Main 2022 (Online) 28th July Evening ShiftJEE Main 2022 (Online) 28th July Morning ShiftJEE Main 2022 (Online) 27th July Evening ShiftJEE Main 2022 (Online) 27th July Morning ShiftJEE Main 2022 (Online) 26th July Evening ShiftJEE Main 2022 (Online) 26th July Morning ShiftJEE Main 2022 (Online) 25th July Evening ShiftJEE Main 2022 (Online) 25th July Morning ShiftJEE Main 2022 (Online) 30th June Morning ShiftJEE Main 2022 (Online) 29th June Evening ShiftJEE Main 2022 (Online) 29th June Morning ShiftJEE Main 2022 (Online) 28th June Evening ShiftJEE Main 2022 (Online) 28th June Morning ShiftJEE Main 2022 (Online) 27th June Evening ShiftJEE Main 2022 (Online) 27th June Morning ShiftJEE Main 2022 (Online) 26th June Evening ShiftJEE Main 2022 (Online) 26th June Morning ShiftJEE Main 2022 (Online) 25th June Evening ShiftJEE Main 2022 (Online) 25th June Morning ShiftJEE Main 2022 (Online) 24th June Evening ShiftJEE Main 2022 (Online) 24th June Morning Shift
2021
JEE Main 2021 (Online) 1st September Evening ShiftJEE Main 2021 (Online) 31st August Evening ShiftJEE Main 2021 (Online) 31st August Morning ShiftJEE Main 2021 (Online) 27th August Evening ShiftJEE Main 2021 (Online) 27th August Morning ShiftJEE Main 2021 (Online) 26th August Evening ShiftJEE Main 2021 (Online) 26th August Morning ShiftJEE Main 2021 (Online) 27th July Evening ShiftJEE Main 2021 (Online) 27th July Morning ShiftJEE Main 2021 (Online) 25th July Evening ShiftJEE Main 2021 (Online) 25th July Morning ShiftJEE Main 2021 (Online) 22th July Evening ShiftJEE Main 2021 (Online) 20th July Evening ShiftJEE Main 2021 (Online) 20th July Morning ShiftJEE Main 2021 (Online) 18th March Evening ShiftJEE Main 2021 (Online) 18th March Morning ShiftJEE Main 2021 (Online) 17th March Evening ShiftJEE Main 2021 (Online) 17th March Morning ShiftJEE Main 2021 (Online) 16th March Evening ShiftJEE Main 2021 (Online) 16th March Morning ShiftJEE Main 2021 (Online) 26th February Evening ShiftJEE Main 2021 (Online) 26th February Morning ShiftJEE Main 2021 (Online) 25th February Evening ShiftJEE Main 2021 (Online) 25th February Morning ShiftJEE Main 2021 (Online) 24th February Evening ShiftJEE Main 2021 (Online) 24th February Morning Shift
2020
JEE Main 2020 (Online) 6th September Evening SlotJEE Main 2020 (Online) 6th September Morning SlotJEE Main 2020 (Online) 5th September Evening SlotJEE Main 2020 (Online) 5th September Morning SlotJEE Main 2020 (Online) 4th September Evening SlotJEE Main 2020 (Online) 4th September Morning SlotJEE Main 2020 (Online) 3rd September Evening SlotJEE Main 2020 (Online) 3rd September Morning SlotJEE Main 2020 (Online) 2nd September Evening SlotJEE Main 2020 (Online) 2nd September Morning SlotJEE Main 2020 (Online) 9th January Evening SlotJEE Main 2020 (Online) 9th January Morning SlotJEE Main 2020 (Online) 8th January Evening SlotJEE Main 2020 (Online) 8th January Morning SlotJEE Main 2020 (Online) 7th January Evening SlotJEE Main 2020 (Online) 7th January Morning Slot
2019
JEE Main 2019 (Online) 12th April Evening SlotJEE Main 2019 (Online) 12th April Morning SlotJEE Main 2019 (Online) 10th April Evening SlotJEE Main 2019 (Online) 10th April Morning SlotJEE Main 2019 (Online) 9th April Evening SlotJEE Main 2019 (Online) 9th April Morning SlotJEE Main 2019 (Online) 8th April Evening SlotJEE Main 2019 (Online) 8th April Morning SlotJEE Main 2019 (Online) 12th January Evening SlotJEE Main 2019 (Online) 12th January Morning SlotJEE Main 2019 (Online) 11th January Evening SlotJEE Main 2019 (Online) 11th January Morning SlotJEE Main 2019 (Online) 10th January Evening SlotJEE Main 2019 (Online) 10th January Morning SlotJEE Main 2019 (Online) 9th January Evening SlotJEE Main 2019 (Online) 9th January Morning Slot
2018
JEE Main 2018 (Online) 16th April Morning SlotJEE Main 2018 (Offline)JEE Main 2018 (Online) 15th April Evening SlotJEE Main 2018 (Online) 15th April Morning Slot
2017
JEE Main 2017 (Online) 9th April Morning SlotJEE Main 2017 (Online) 8th April Morning SlotJEE Main 2017 (Offline)
2016
JEE Main 2016 (Online) 10th April Morning SlotJEE Main 2016 (Online) 9th April Morning SlotJEE Main 2016 (Offline)
2015
JEE Main 2015 (Offline)
2014
JEE Main 2014 (Offline)
2013
JEE Main 2013 (Offline)
2012
AIEEE 2012
2011
AIEEE 2011
2010
AIEEE 2010
2009
AIEEE 2009
2008
AIEEE 2008
2007
AIEEE 2007
2006
AIEEE 2006
2005
AIEEE 2005
2004
AIEEE 2004
2003
AIEEE 2003
2002
AIEEE 2002
JEE Main 2015 (Offline)
Paper was held on Sat, Apr 4, 2015 9:30 AM
Practice Questions
Chemistry
1
The vapour pressure of acetone at 20oC is 185 torr. When 1.2 g of a non-volatile substance was dissolved in 100 g of acetone at 20oC, its vapour pressure was 183 torr. The molar mass (g mol-1) of the substance is:
2
Which of the following compounds will exhibit geometrical isomerism?
3
In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg of AgBr. The percentage of bromine in the compound is: (at. Mass Ag = 108; Br = 80)
4
The molecular formula of a commercial resin used for exchanging ions in water softening is C8H7SO3Na (Mol. Wt. 206). What would be the maximum uptake of Ca2+ ions by the resin when expressed in mole per gram resin?
5
The following reaction is performed at 298 K
2NO(g) + O2 (g) $$\leftrightharpoons$$ 2NO2 (g)
The standard free energy of formation of NO(g) is 86.6 kJ/mol at 298 K. What is the standard free energy of formation of NO2(g) at 298 K? (KP = 1.6 × 1012)
6
The standard Gibbs energy change at 300 K for the reaction 2A $$\leftrightharpoons$$ B + C is 2494.2 J. At a given time, the composition of the reaction mixture is [A] = 1/2, [B] = 2 and [C] = 1/2. The reaction proceeds in the: [R = 8.314 J/K/mol, e = 2.718]
7
Two Faraday of electricity is passed through a solution of CuSO4. The mass of copper deposited at the cathode is: (at. mass of Cu = 63.5 amu)
8
The intermolecular interaction that is dependent on the inverse cube of distance between the molecule is:
9
Which of the vitamins given below is water soluble?
10
Match the catalysts to the correct processes :

Catalyst Process
(A) TiCl3 (i) Wacker process
(B) PdCl2 (ii) Ziegler - Natta
polymerization
(C) CuCl2 (iii) Contact process
(D) V2O5 (iv) Deacon's process
11
In the reaction

JEE Main 2015 (Offline) Chemistry - Compounds Containing Nitrogen Question 210 English
The product $$E$$ is :
12
Which compound would give $$5$$ - keto - $$2$$ - methylhexanal upon ozonolysis?
13
In the following sequence of reactions:

JEE Main 2015 (Offline) Chemistry - Aldehydes, Ketones and Carboxylic Acids Question 232 English
The product C is
14
The synthesis of alkyl fluorides is best accomplished by:
15
The number of geometric isomers that can exist for square planar [Pt (Cl) (py) (NH3) (NH2OH)]+ is (py = pyridine) :
16
The colour of KMnO4 is due to :
17
Which of the following compounds is not colored yellow?
18
Assertion : Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen.

Reason : The reaction between nitrogen and oxygen requires high temperature.
19
Which one has the highest boiling point?
20
Higher order (>3) reactions are rare due to
21
The ionic radii (in Å) of N3–, O2– and F are respectively:
22
Which of the following is the energy of a possible excited state of hydrogen?
Mathematics
1
If the function.

$$g\left( x \right) = \left\{ {\matrix{ {k\sqrt {x + 1} ,} & {0 \le x \le 3} \cr {m\,x + 2,} & {3 < x \le 5} \cr } } \right.$$

is differentiable, then the value of $$k+m$$ is :
2
The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is :
3
$$\mathop {\lim }\limits_{x \to 0} {{\left( {1 - \cos 2x} \right)\left( {3 + \cos x} \right)} \over {x\tan 4x}}$$ is equal to
4
Let $$\alpha $$ and $$\beta $$ be the roots of equation $${x^2} - 6x - 2 = 0$$. If $${a_n} = {\alpha ^n} - {\beta ^n},$$ for $$n \ge 1,$$ then the value of $${{{a_{10}} - 2{a_8}} \over {2{a_9}}}$$ is equal to :
5
If $$12$$ different balls are to be placed in $$3$$ identical boxes, then the probability that one of the boxes contains exactly $$3$$ balls is :
6
Let $$y(x)$$ be the solution of the differential equation

$$\left( {x\,\log x} \right){{dy} \over {dx}} + y = 2x\,\log x,\left( {x \ge 1} \right).$$ Then $$y(e)$$ is equal to :
7
The area (in sq. units) of the region described by

$$\left\{ {\left( {x,y} \right):{y^2} \le 2x} \right.$$ and $$\left. {y \ge 4x - 1} \right\}$$ is :
8
The integral
$$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
9
The integral $$\int {{{dx} \over {{x^2}{{\left( {{x^4} + 1} \right)}^{3/4}}}}} $$ equals :
10
If $$A = \left[ {\matrix{ 1 & 2 & 2 \cr 2 & 1 & { - 2} \cr a & 2 & b \cr } } \right]$$ is a matrix satisfying the equation

$$A{A^T} = 9\text{I},$$ where $$I$$ is $$3 \times 3$$ identity matrix, then the ordered

pair $$(a, b)$$ is equal to :
11
The set of all values of $$\lambda $$ for which the system of linear equations:

$$\matrix{ {2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}} \cr {2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}} \cr { - {x_1} + 2{x_2} = \lambda {x_3}} \cr } $$

has a non-trivial solution
12
Let $$f(x)$$ be a polynomial of degree four having extreme values
at $$x=1$$ and $$x=2$$. If $$\mathop {\lim }\limits_{x \to 0} \left[ {1 + {{f\left( x \right)} \over {{x^2}}}} \right] = 3$$, then f$$(2)$$ is equal to :
13
Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right),$$
where $$\left| x \right| < {1 \over {\sqrt 3 }}.$$ Then a value of $$y$$ is :
14
Let $$O$$ be the vertex and $$Q$$ be any point on the parabola, $${{x^2} = 8y}$$. If the point $$P$$ divides the line segment $$OQ$$ internally in the ratio $$1:3$$, then locus of $$P$$ is :
15
Locus of the image of the point $$(2, 3)$$ in the line $$\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,\,k \in R,$$ is a :
16
The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $$(0, 0)$$ $$(0, 41)$$ and $$(41, 0)$$ is :
17
If m is the A.M. of two distinct real numbers l and n $$(l,n > 1)$$ and $${G_1},{G_2}$$ and $${G_3}$$ are three geometric means between $$l$$ and n, then $$G_1^4\, + 2G_2^4\, + G_3^4$$ equals:
18
The number of integers greater than 6,000 that can be formed, using the digits 3, 5, 6, 7 and 8, without repetition, is:
19
A complex number z is said to be unimodular if $$\,\left| z \right| = 1$$. Suppose $${z_1}$$ and $${z_2}$$ are complex numbers such that $${{{z_1} - 2{z_2}} \over {2 - {z_1}\overline {{z_2}} }}$$ is unimodular and $${z_2}$$ is not unimodular. Then the point $${z_1}$$ lies on a :
20
Let A and B be two sets containing four and two elements respectively. Then, the number of subsets of the set A $\times$ B , each having atleast three elements are
Physics
1
As an electron makes a transition from an excited state to the ground state of a hydrogen - like atom/ion :
2
A red $$LED$$ emits light at $$0.1$$ watt uniformly around it. The amplitude of the electric field of the light at a distance of $$1$$ $$m$$ from the diode is :
3
Monochromatic light is incident on a glass prism of angle $$A$$. If the refractive index of the material of the prism is $$\mu $$, a ray, incident at an angle $$\theta $$. on the face $$AB$$ would get transmitted through the face $$AC$$ of the prism provided :

JEE Main 2015 (Offline) Physics - Geometrical Optics Question 211 English
4
An inductor $$(L=0.03$$ $$H)$$ and a resistor $$\left( {R = 0.15\,k\Omega } \right)$$ are connected in series to a battery of $$15V$$ $$EMF$$ in a circuit shown below. The key $${K_1}$$ has been kept closed for a long time. Then at $$t=0$$, $${K_1}$$ is opened and key $${K_2}$$ is closed simultaneously. At $$t=1$$ $$ms,$$ the current in the circuit will be : $$\left( {{e^5} \cong 150} \right)$$

JEE Main 2015 (Offline) Physics - Alternating Current Question 159 English
5

An $$LCR$$ circuit is equivalent to a damped pendulum. In an $$LCR$$ circuit the capacitor is charged to $${Q_0}$$ and then connected to the $$L$$ and $$R$$ as shown below :

JEE Main 2015 (Offline) Physics - Alternating Current Question 158 English

If a student plots graphs of the square of maximum charge $$\left( {Q_{Max}^2} \right)$$ on the capacitor with time$$(t)$$ for two different values $${L_1}$$ and $${L_2}$$ $$\left( {{L_1} > {L_2}} \right)$$ of $$L$$ then which of the following represents this graph correctly ?
$$\left( {plots\,\,are\,\,schematic\,\,and\,\,niot\,\,drawn\,\,to\,\,scale} \right)$$

6
Assuming human pupil to have a radius of $$0.25$$ $$cm$$ and a comfortable viewing distance of $$25$$ $$cm$$, the minimum separation between two objects that human eye can resolve at $$500$$ $$nm$$ wavelength is :
7
On a hot summer night, the refractive index of air is smallest near the ground and increases with height from the ground. When a light beam is directed horizontally, the Huygens' principle leads us to conclude that as it travels, the light beam :
8
Two coaxial solenoids of different radius carry current $$I$$ in the same direction. $$\overrightarrow {{F_1}} $$ be the magnetic force on the inner solenoid due to the outer one and $$\overrightarrow {{F_2}} $$ be the magnetic force on the outer solenoid due to the inner one. Then :
9

A rectangular loop of sides $$10$$ $$cm$$ and $$5$$ $$cm$$ carrying a current $$1$$ of $$12A$$ is placed in different orientations as shown in the figures below :

JEE Main 2015 (Offline) Physics - Magnetic Effect of Current Question 189 English

If there is a uniform magnetic field of $$0.3$$ $$T$$ in the positive $$z$$ direction, in which orientations the loop would be in $$(i)$$ stable equilibrium and $$(ii)$$ unstable equilibrium ?

10
Two stones are thrown up simultaneously from the edge of a cliff $$240$$ $$m$$ high with initial speed of $$10$$ $$m/s$$ and $$40$$ $$m/s$$ respectively. Which of the following graph best represents the time variation of relative position of the second stone with respect to the first ?

(Assume stones do not rebound after hitting the ground and neglect air resistance, take $$g = 10m/{s^2}$$)

(The figures are schematic and not drawn to scale)
11
JEE Main 2015 (Offline) Physics - Current Electricity Question 307 English
In the circuit shown, the current in the $$1\Omega $$ resistor is :
12
Two long current carrying thin wires, both with current $$I,$$ are held by insulating threads of length $$L$$ and are in equilibrium as shown in the figure, with threads making an angle $$'\theta '$$ with the vertical. If wires have mass $$\lambda $$ per unit-length then the value of $$I$$ is :
($$g=$$ $$gravitational$$ $$acceleration$$ )

JEE Main 2015 (Offline) Physics - Magnetic Effect of Current Question 190 English
13
When $$5V$$ potential difference is applied across a wire of length $$0.1$$ $$m,$$ the drift speed of electrons is $$2.5 \times {10^{ - 4}}\,\,m{s^{ - 1}}.$$ If the electron density in the wire is $$8 \times {10^{28}}\,\,{m^{ - 3}},$$ the resistivity of the material is close to :
14
A long cylindrical shell carries positives surfaces change $$\sigma $$ in the upper half and negative surface charge - $$\sigma $$ in the lower half. The electric field lines around the cylinder will look like figure given in :
(figures are schematic and not drawn to scale)
15
A uniformly charged solid sphere of radius $$R$$ has potential $${V_0}$$ (measured with respect to $$\infty $$) on its surface. For this sphere the equipotential surfaces with potentials $${{3{V_0}} \over 2},\,{{5{V_0}} \over 4},\,{{3{V_0}} \over 4}$$ and $${{{V_0}} \over 4}$$ have radius $${R_1},\,\,{R_2},\,\,{R_3}$$ and $${R_4}$$ respectively. Then
16
In the given circuit, charges $${Q_2}$$ on the $$2\mu F$$ capacitor changes as $$C$$ is varied from $$1\,\mu F$$ to $$3\mu F.$$ $${Q_2}$$ as a function of $$'C'$$ is given properly by:
$$\left( {figures\,\,are\,\,drawn\,\,schematically\,\,and\,\,are\,\,not\,\,to\,\,scale} \right)$$

JEE Main 2015 (Offline) Physics - Capacitor Question 146 English
17
For a simple pendulum, a graph is plotted between its kinetic energy $$(KE)$$ and potential energy $$(PE)$$ against its displacement $$d.$$ Which one of the following represents these correctly?
$$(graphs$$ $$are$$ $$schematic$$ $$and$$ $$not$$ $$drawn$$ $$to$$ $$scale)$$
18
A pendulum made of a uniform wire of cross sectional area $$A$$ has time period $$T.$$ When an additional mass $$M$$ is added to its bob, the time period changes to $${T_{M.}}$$ If the Young's modulus of the material of the wire is $$Y$$ then $${1 \over Y}$$ is equal to :
($$g=$$ $$gravitational$$ $$acceleration$$)
19
From a solid sphere of mass $$M$$ and radius $$R,$$ a spherical portion of radius $$R/2$$ is removed, as shown in the figure. Taking gravitational potential $$V=0$$ at $$r = \infty ,$$ the potential at the center of the cavity thus formed is:
($$G=gravitational $$ $$constant$$)JEE Main 2015 (Offline) Physics - Gravitation Question 178 English
20
Consider a spherical shell of radius $$R$$ at temperature $$T$$. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $$u = {U \over V}\, \propto \,{T^4}$$ and pressure $$p = {1 \over 3}\left( {{U \over V}} \right)$$ . If the shell now undergoes an adiabatic expansion the relation between $$T$$ and $$R$$ is:
21
Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as $${V^q},$$ where $$V$$ is the volume of the gas. The value of $$q$$ is: $$\left( {\gamma = {{{C_p}} \over {{C_v}}}} \right)$$
22
A solid body of constant heat capacity $$1$$ $$J/{}^ \circ C$$ is being heated by keeping it in contact with reservoirs in two ways:
$$(i)$$ Sequentially keeping in contact with $$2$$ reservoirs such that each reservoir
$$\,\,\,\,\,\,\,\,$$supplies same amount of heat.
$$(ii)$$ Sequentially keeping in contact with $$8$$ reservoirs such that each reservoir
$$\,\,\,\,\,\,\,\,\,\,$$supplies same amount of heat.
In both the cases body is brought from initial temperature $${100^ \circ }C$$ to final temperature $${200^ \circ }C$$. Entropy change of the body in the two cases respectively is :
23
JEE Main 2015 (Offline) Physics - Laws of Motion Question 118 English
Given in the figure are two blocks $$A$$ and $$B$$ of weight 20 N and 100 N, respectively. These are being pressed against a wall by a force $$F$$ as shown. If the coefficient of friction between the blocks is 0.1 and between block $$B$$ and the wall is 0.15, the frictional force applied by the wall on block $$B$$ is :
24
From a solid sphere of mass $$M$$ and radius $$R$$ a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its center and perpendicular to one of its face is:
25
Distance of the center of mass of a solid uniform cone from its vertex is $$z{}_0$$. If the radius of its base is $$R$$ and its height is $$h$$ then $$z{}_0$$ is equal to :
26
A particle of mass $$m$$ moving in the $$x$$ direction with speed $$2v$$ is hit by another particle of mass $$2m$$ moving in the $$y$$ direction with speed $$v.$$ If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to:
27
The period of oscillation of a simple pendulum is $$T = 2\pi \sqrt {{L \over g}} $$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using wrist watch of 1 s resolution. The accuracy in the determination of g is: