1
If a real valued function $f:[a, \infty) \rightarrow[b, \infty)$ defined by $f(x)=2 x^2-3 x+5$ is a bijection. Then, $3 a+2 b=$
2
The domain of the real valued function $f(x)=\frac{1}{\sqrt{\log _{0.5}(2 x-3)}}+\sqrt{4-9 x^2}$ is
3
$$
2 \cdot 5+5 \cdot 9+8 \cdot 13+11 \cdot 17+\ldots \text { to } 10 \text { terms }=
$$
4
$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a^2 & b^2 & c^2 \\
a^3 & b^3 & c^3
\end{array}\right|=
$$
5
If $A=\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]$ and $\alpha A^2+\beta A=2 I$ for some $\alpha, \beta \in R$, then $\alpha+\beta=$
6
The system of equations
$$
x+2 y+3 z=6, x+3 y+5 z=9 \text {, }
$$
$2 x+5 y+a z=12$ has no solution when $a=$
7
If $m, n$ are respectively the least positive and greatest negative integer value of $k$ such that $\left(\frac{1-i}{1+i}\right)^k=-i$, then $m-n=$
8
If a complex number $z$ is such that $\frac{z-2 i}{z-2}$ is purely imaginary number and the locus of $z$ is a closed curve, then the area of the region bounded by that closed curve and lying in the first quadrant is $\frac{z-2 i}{z-2}$
9
Real part of $\frac{(\cos a+i \sin a)^6}{(\sin b+i \cos b)^8}$ is
10
$$
4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots \infty}}}=
$$
11
If $x^2+5 a x+6=0$ and $x^2+3 a x+2=0$ have a common root, then that common root is
12
If $\alpha, \beta, \gamma$ are roots of equations $x^3+a x^2+b x+x=0$, then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=$
13
If the roots of equation $x^3-13 x^2+K x-27=0$ are in geometric progression, then $K=$
14
If all the letters of the word MASTER are permuted in all possible ways and words (with or without meaning) thus formed are arranged in dictionary order, then the rank of the word MASTER is
15
If Set $A$ contains 8 elements, then number of subsets of $A$ which contain at least 6 elements is
16
The number of different permutations that can be formed by taking 4 letters at a time from the letters of the word 'REPETITION' is
17
Numerically greatest term in the expansion of $(5+3 x)^6$ When, $x=1$, is
18
$$
1-\frac{2}{3}+\frac{2 \cdot 4}{3 \cdot 6}-\frac{2 \cdot 4 \cdot 6}{3 \cdot 6 \cdot 9}+\ldots \infty=
$$
19
If $\frac{1}{x^4+1}=\frac{A x+B}{x^2+\sqrt{2} x+1}+\frac{C x+D}{x^2-\sqrt{2} x+1}$, then $B D-A C=$
20
The smallest positive value (in degrees) of $\theta$ for which $\tan \left(\theta+100^{\circ}\right)=\tan \left(\theta+50^{\circ}\right) \tan (\theta) \tan \left(\theta-50^{\circ}\right)$ is valid, is
21
The value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ lies between
22
Statement $(\mathrm{S} 1) \sin 55^{\circ}+\sin 53^{\circ}-\sin 19^{\circ}-\sin 17^{\circ}=\cos 2^{\circ}$
Statement (S2) Range of $\frac{1}{3-\cos 2 x}$ is $\left[\frac{1}{4}, \frac{1}{2}\right]$
Which one of the following is correct?
23
The general solution of
$$ \begin{aligned} & 4 \cos 2 x-4 \sqrt{3} \sin 2 x+\cos 3 x-\sqrt{3} \sin 3 x \\ & \qquad+\cos x-\sqrt{3} \sin x=0 \end{aligned} $$
24
The general solution of $2 \cos ^2 x-2 \tan x+1=0$ is
25
$$
\cosh \left(\sinh ^{-1}(\sqrt{8})+\cosh ^{-1} 5\right)=
$$
26
In a $\triangle A B C$, if $r_1=2 r_2=3 r_3$, then $\sin A: \sin B: \sin C=$
27
In $\triangle A B C$, if $B=90^{\circ}$, then $2(r+R)=$
28
In a $\triangle A B C$, if $(a-b)(s-c)=(b-c)(s-a)$, then $r_1+r_3=$
29
If $L M N$ are the mid-points of the sides $P Q, Q R$ and $R P d$ $\triangle P Q R$ respectively, then
$$
\begin{aligned}
& \mathbf{Q M}+\mathbf{L N}+\mathbf{M L}+\mathbf{R N}-\mathbf{M N}-\mathbf{Q L}=
\end{aligned}
$$
30
Let $\mathbf{a} \times \mathbf{b}=7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\mathbf{a}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$. If the length of projection of $\mathbf{b}$ on $\mathbf{a}$ is
$$
\frac{8}{\sqrt{14}}, \text { then }|b|=
$$
31
Let $A B C$ be an equilateral triangle of side a. $M$ and $N$ are two points on the sides $A B$ and $A C$, respectively such that $\mathbf{A N}={ }^{\prime} K \mathbf{A C}$ and $\mathbf{A B}=3 \mathbf{A M}$. If the vectors $\mathbf{B N}$ and $\mathbf{C M}$ are perpendicular, then $K=$
32
Let $\mathbf{a}$ and $\mathbf{b}$ be two non-collinear vector of unit modulus. If $\mathbf{u}=\mathbf{a}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ and $\mathbf{v}=\mathbf{a} \times \mathbf{b}$, then $|\mathbf{v}|=$
33
The shortest distance between the skew lines $\mathbf{r}=(-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})+t(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$ and $\mathbf{r}=(7 \hat{\mathbf{i}}+4 \hat{\mathbf{k}})+s(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ is
34
If $m$ and $M$ denote the mean deviations about mean and about median respectively of the data $20,5,15,2$, $7,3,11$, then the mean deviation about the mean of $m$ and $M$ is
35
If 7 different balls are distributed among 4 different boxes, then the probability that the first box contains 3 balls is
36
Out of first 5 consecutive natural numbers, if two different numbers $x$ and $y$ are chosen at random, then the probability that $x^4-y^4$ is divisible by 5 is
37
A bag contains 2 white, 3 green and 5 red balls. If three balls are drawn one after the other without replacement, then the probability that the last ball drawn was red is
38
There are 2 bags each containing 3 white and 5 black balls and 4 bags each containing 6 white and 4 black balls. If a ball drawn randomly from a bag is found to be black, then the probability that this ball is from the first set of bags is
39
If two cards are drawn randomly from a pack of 52 playing cards, then the mean of the probability distribution of number of kings is
40
In a consignment of 15 articles, it is found that 3 are defective. If a sample of 5 articles is chosen at random from it, then the probability of having 2 defective articles is
41
If a variable straight line passing through the point of intersection of the lines $x-2 y+3=0$ and $2 x-y-1=0$ intersects the $X, Y$-axes at $A$ and $B$ respectively, then the equation of the locus of a point which divides the segment $A B$ in the ratio $-2: 3$ is
42
Point $(-1,2)$ is changed to $(a, b)$, when the origin is shifted to the point $(2,-1)$ by translation of axes, Point $(a, b)$ is changed to $(c, d)$, when the axes are rotated through an angle of $45^{\circ}$ about the new origin, $(c, d)$ is changed to $(e, f)$, when $(c, d)$ is reflected through $y=x$. Then, $(e, f)=$
43
The point $(a, b)$ is the foot of the perpendicular drawn from the point $(3,1)$ to the line $x+3 y+4=0$. If $(p, q)$ is the image of $(a, b)$ with respect to the line $3 x-4 y+11=0$, then $\frac{p}{a}+\frac{q}{b}=$
44
A ray of light passing through the point $(2,3)$ reflects on $Y$-axis at a point $P$. If the reflected ray passes through the point $(3,2)$ and $P=(a, b)$, then $5 b=$
45
The area (in sq units) of the triangle formed by the lines $6 x^2+13 x y+6 y^2=0$ and $x+2 y+3=0$ is
46
The angle subtended by the chord $x+y-1=0$ of the circle $x^2+y^2-2 x+4 y+4=0$ at the origin is
47
Let $P$ be any point on the circle $x^2+y^2=25$. Let $L$ be the chord of contact of $P$ with respect to the circle $x^2+y^2=9$. The locus of the poles of the lines $L$ with respect to the circle $x^2+y^2=36$ is
48
If the circles $S \equiv x^2+y^2-14 x+6 y+33=0$ and $S^1 \equiv x^2+y^2-a^2=0(a \in N)$ have 4 common tangents, then possible number of values of $a$ is
49
If the area of the circum-circle of triangle formed by the line $2 x+5 y+\alpha=0$ and the positive coordinate axes is $\frac{29 \pi}{4} S q$, units, then $|\alpha|=$
50
The circle $S \equiv x^2+y^2-2 x-4 y+1=0$ cuts the $Y$-axis at $A, B(O A>O B)$. If the radical axis of $S \equiv 0$ and $S' \equiv x^2+y^2-4 x-2 y+4=0$ cuts the $Y$-axis at $C$, then the ratio in which $C$ divides $A B$ is
51
If the circle $S=0$ cuts the circles $x^2+y^2-2 x+6 y=0$, $x^2+y^2-4 x-2 y+6=0$ and $x^2+y^2-12 x+2 y+3=0$ orthogonally, then equation of the tangent at $(0,3)$ on $S=0$ is
52
The normal drawn at a point $(2,-4)$ on the parabola $y^2 \pm 8 x$ cuts again the same parabola at $(\alpha, \beta)$, then $\alpha+\beta=$
53
If a tangent of slope 2 to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ touches the circle $x^2+y^2=4$, then maximum value of $a b$ is
54
The locus of the mid-points of the chords of the hyperbola $x^2-y^2=a^2$ which touch the parabola $y^2=4 a x$ is
55
If the product of eccentricities of the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{9}-\frac{y^2}{16}=-1$ is 1 , then $b^2=$
56
If $A(1,2,0), B(2,0,1), C(-3,0,2)$ are the vertices of $\triangle A B C$, then the length of the internal bisector of $\angle B A C$ is
57
The perpendicular distance from the point $(-1,1,0)$ to the line joining the points $(0,2,4)$ and $(3,0,1)$ is
58
A line $L$ passes through the points $(1,2,-3)$ and $(\beta, 3,1)$ and a plane $\pi$ passes through the points $(2,1,-2)$, $(-2,-3,6),(0,2,-1)$. If $\theta$ is the angle between the line $L$ and plane $\pi$, then $27 \cos ^2 \theta=$
59
$$
\lim \limits_{x \rightarrow 3} \frac{x^3-27}{x^2-9}=
$$
60
If $f(x)=\left\{\begin{array}{ll}3 a x-2 b, & x>1 \\ a x+b+1, & x<1\end{array}\right.$ and
$\lim \limits_{x \rightarrow 1} f(x)$ exists, then the relation between $a$ and $b$ is
61
The function $f(x)=\left\{\begin{array}{ll}\frac{2}{5-x}, & x<3 \\ 5-x, & x \geq 3\end{array}\right.$ is
62
If $y=f(x)$ is a thrice differentiable function and a bijection, then $\frac{d^2 x}{d y^2}\left(\frac{d y}{d x}\right)^3+\frac{d^2 y}{d x^2}=$
63
If $f(x)=\left\{\begin{array}{cl}x^\alpha \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$
which of the following is true?
64
Let $f(x)=\min \left\{x, x^2\right\}$ for every real number of $x$, then
65
If $y=\left(1+\alpha+\alpha^2+\ldots\right) e^{\eta x}$, where $\alpha$ and $n$ are constants, then the relative error in $y$ is
66
If the equation of tangent at $(2,3)$ on $y^2=a x^3+b$ is $y=4 x-5$, then the value of $a^2+b^2=$
67
If Rolle's theorem is applicable for the function $f(x)=x(x+3) e^{-x / 2}$ on $[3,0]$, then the value of $c$ is
68
For all $x \in[0,2024]$ assume that $f(x)$ is differentiable, $f(0)=-2$ and $f^{\prime}(x) \geq 5$. Then, the least possible value of $f(2024)$ is
69
$$
\int \frac{2 x^2 \cos x^2-\sin x^2}{x^2} d x=
$$
70
If $\int \frac{\log \left(1+x^4\right)}{x^3} d x=f(x) \log \left(\frac{1}{g(x)}\right)+\tan ^{-1}$
$(h(x))+c$, then $h(x)\left[f(x)+f\left(\frac{1}{x}\right)\right]=$
71
Let $f(x)=\int \frac{x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{4} \log \left(\frac{5}{6}\right)$, then $f(0)=$
72
$$
\int \frac{2 \cos 2 x}{(1+\sin 2 x)(1+\cos 2 x)} d x=
$$
73
$$
\int\left(\frac{x}{x \cos x-\sin x}\right)^2 d x=
$$
74
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then
$$
a+b=
$$
75
$$
\int_0^\pi x \sin ^4 x \cos ^6 x d x=
$$
76
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$, then $I_{13}+I_{11}=$
77
The area (in sq units) of the smaller region lying above the $X$-axis and bounded between the circle $x^2+y^2=2 a x$ and the parabola $y^2=a x$ is
78
The difference of the order and degree of the differential equation $\left(\frac{d^2 y}{d x^2}\right)^{-\frac{7}{2}}\left(\frac{d^3 y}{d x^3}\right)^2-\left(\frac{d^2 y}{d x^2}\right)^{-\frac{5}{2}}\left(\frac{d^4 y}{d x^4}\right)=0$ is
79
If $x d y+\left(y+y^2 x\right) d x=0$ and $y=1$ at $x=1$, then
80
The solution of $x d y-y d x=\sqrt{x^2+y^2} d x$ when $y(\sqrt{3})=1$ is