$$\,\,{{{d^2}x\left( t \right)} \over {d{t^2}}} + x\left( t \right) = 0,t > 0,\,\,$$ such that
$$\,{x_1}\left( 0 \right) = 1,{\left. {{{d{x_1}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 0,$$ $$\,\,\,\,{x_2}\left( 0 \right) = 0,{\left. {{{d{x_2}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 1$$
The wronskian $$\,w\left( t \right) = \left| {{{\matrix{ {{x_1}\left( t \right)} \cr {d{x_1}\left( t \right)} \cr } } \over {dt}}} \right.\left. {{{\matrix{ {{x_2}\left( t \right)} \cr {d{x_2}\left( t \right)} \cr } } \over {dt}}} \right|$$ at $$\,\,t = \pi /2$$
$$f\left( z \right) = u\left( {x + y} \right) + iv\left( {x,y} \right),$$ where $$i = \sqrt { - 1} .$$ If $$u(x, y)=$$ $${x^3} - {y^2}$$
then expression for $$v(x,y)$$ in terms of $$x,y$$ and a general constant $$c$$ would be

$${\rm I}.$$ The fluid is well-mixed
$${\rm II}.$$ The fluid is unmixed
$${\rm III}.$$ $$R{e_D} < 2300$$
$${\rm IV}.$$ $$R{e_D} > 2300$$


The interface temperature $${T_i}$$ (in $$K$$) of the composite wall is ___________

The view factor $${F_{21}}$$ for radiation heat transfer is


The forecast of the sales, using the 4-month moving average method, for the month of February is ____________.
$$\eqalign{ & {x_1} + {x_2} \le 8, \cr & {x_1} + 2{x_2} \le 4, \cr & {x_1} \ge 0,{x_2} \ge 0, \cr} $$
The maximum value of the objective function is ________________.



$$P.$$ reduction in friction angle increases cutting force
$$Q.$$ Reduction in friction angle decreases cutting force
$$R.$$ Reduction in friction angle increases chip thickness
$$S.$$ Reduction in friction angle decreases chip thickness

The distance $${H_2} = 35.55\,\,mm$$ and $${H_1} = 20.55\,\,mm$$. The diameter ($$D,$$ in $$mm$$) of the ring gauge is __________________.





$${\rm I}.$$ The fluid is well-mixed
$${\rm II}.$$ The fluid is unmixed
$${\rm III}.$$ $$R{e_D} < 2300$$
$${\rm IV}.$$ $$R{e_D} > 2300$$


The interface temperature $${T_i}$$ (in $$K$$) of the composite wall is ___________