2025
GATE CSE 2025 Set 2GATE CSE 2025 Set 12024
GATE CSE 2024 Set 2GATE CSE 2024 Set 12023
GATE CSE 20232022
GATE CSE 20222021
GATE CSE 2021 Set 2GATE CSE 2021 Set 12020
GATE CSE 20202019
GATE CSE 20192018
GATE CSE 20182017
GATE CSE 2017 Set 2GATE CSE 2017 Set 12016
GATE CSE 2016 Set 2GATE CSE 2016 Set 12015
GATE CSE 2015 Set 3GATE CSE 2015 Set 2GATE CSE 2015 Set 12014
GATE CSE 2014 Set 3GATE CSE 2014 Set 2GATE CSE 2014 Set 12013
GATE CSE 20132012
GATE CSE 20122011
GATE CSE 20112010
GATE CSE 20102009
GATE CSE 20092008
GATE CSE 20082007
GATE CSE 20072006
GATE CSE 20062005
GATE CSE 20052004
GATE CSE 20042003
GATE CSE 20032002
GATE CSE 20022001
GATE CSE 20012000
GATE CSE 20001999
GATE CSE 19991998
GATE CSE 19981997
GATE CSE 19971996
GATE CSE 19961995
GATE CSE 19951994
GATE CSE 19941993
GATE CSE 19931992
GATE CSE 19921991
GATE CSE 19911990
GATE CSE 19901989
GATE CSE 19891988
GATE CSE 19881987
GATE CSE 1987GATE CSE 2017 Set 2
Paper was held on Thu, Jan 1, 1970 12:00 AM
1
Let $$P = \left[ {\matrix{
1 & 1 & { - 1} \cr
2 & { - 3} & 4 \cr
3 & { - 2} & 3 \cr
} } \right]$$ and $$Q = \left[ {\matrix{
{ - 1} & { - 2} & { - 1} \cr
6 & {12} & 6 \cr
5 & {10} & 5 \cr
} } \right]$$ be two matrices.
Then the rank of $$P+Q$$ is _______.
Then the rank of $$P+Q$$ is _______.
2
If the characteristic polynomial of a $$3 \times 3$$ matrix $$M$$ over $$R$$(the set of real numbers) is $${\lambda ^3} - 4{\lambda ^2} + a\lambda + 30.\,a \in R,$$ and one eigenvalue of $$M$$ is $$2,$$ then the largest among the absolute values of the eigenvalues of $$M$$ is ________.
3
If $$f\left( x \right)\,\,\, = \,\,\,R\,\sin \left( {{{\pi x} \over 2}} \right) + S.f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = {{2R} \over \pi }} ,$$ then the constants $$R$$ and $$S$$ are respectively.
4
Consider a quadratic equation $${x^2} - 13x + 36 = 0$$ with coefficients in a base $$b.$$ The solutions of this equation in the same base $$b$$ are $$x=5$$ and $$x=6$$. Then $$b=$$ ______.
5
$$P$$ and $$Q$$ are considering to apply for a job. The probability that $$P$$ applies for the job is $${1 \over 4},$$ the probability that $$P$$ applies for the job given that $$Q$$ applies for the job is $${1 \over 2},$$ and the probability that $$Q$$ applies for the job given that $$P$$ applies for the job is $${1 \over 3}.$$ Then the probability that $$P$$ does not apply for the job given that $$Q$$ does not apply for the job is
6
If a random variable $$X$$ has a Poisson distribution with mean $$5,$$ then the expectation $$E\left[ {{{\left( {X + 2} \right)}^2}} \right]$$ equals _________.
7
For any discrete random variable $$X,$$ with probability mass function $$P\left( {X = j} \right) = {p_j},$$
$${p_j}\,\, \ge 0,\,j \in \left\{ {0,..........,\,\,\,N} \right\},$$ and $$\,\,\sum\limits_{j = 0}^N {{p_j} = 1,\,\,} $$ define the polynomial function $${g_x}\left( z \right) = \sum\limits_{j = 0}^N {{p_j}{z^j}} .$$ For a certain discrete random variable $$Y$$, there exists a scalar $$\beta $$ $$ \in \left[ {0,1} \right]$$ such that $${g_y}\left( z \right) = {\left\{ {1 - \beta + \left. {\beta z} \right)} \right.^N}.$$ The expectation of $$Y$$ is
$${p_j}\,\, \ge 0,\,j \in \left\{ {0,..........,\,\,\,N} \right\},$$ and $$\,\,\sum\limits_{j = 0}^N {{p_j} = 1,\,\,} $$ define the polynomial function $${g_x}\left( z \right) = \sum\limits_{j = 0}^N {{p_j}{z^j}} .$$ For a certain discrete random variable $$Y$$, there exists a scalar $$\beta $$ $$ \in \left[ {0,1} \right]$$ such that $${g_y}\left( z \right) = {\left\{ {1 - \beta + \left. {\beta z} \right)} \right.^N}.$$ The expectation of $$Y$$ is