Electricity
Current Electricity
MCQ (Single Correct Answer)
Moving Charges and Magnetism
MCQ (Single Correct Answer)
Magnetism and Matter
MCQ (Single Correct Answer)
Electromagnetic Induction
MCQ (Single Correct Answer)
Electromagnetic Waves
MCQ (Single Correct Answer)
Modern Physics
Semiconductor Electronics
MCQ (Single Correct Answer)
1
NEET 2017
MCQ (Single Correct Answer)
+4
-1
The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is
A
$${h \over {\sqrt {3mkT} }}$$
B
$${{2h} \over {\sqrt 3 mkT}}$$
C
$${{2h} \over {\sqrt {mkT} }}$$
D
$${h \over {\sqrt {mkT} }}$$
2
NEET 2016 Phase 2
MCQ (Single Correct Answer)
+4
-1
Electrons of mass m with de-Broglie wavelength $$\lambda $$ fall on the target in an X-ray tube. The cutoff wavelength ($$\lambda $$0) of the emitted X-ray is
A
$$\lambda $$0 = $${{2mc{\lambda ^2}} \over h}$$
B
$${\lambda _0} = {{2h} \over {mc}}$$
C
$${\lambda _0} = {{2{m^2}{c^2}{\lambda ^3}} \over {{h^2}}}$$
D
$${\lambda _0} = \lambda $$
3
NEET 2016 Phase 2
MCQ (Single Correct Answer)
+4
-1
Photons with energy 5 eV are incifent on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV. When photons of energy 6 eV are incident on C, no photoelectrons will reach the anode A, if the stopping potential of A relative to C is
A
+ 3 V
B
+4 V
C
$$-$$1 V
D
$$-$$3 V
4
NEET 2016 Phase 1
MCQ (Single Correct Answer)
+4
-1
An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is
A
$$c{\left( {2mE} \right)^{{1 \over 2}}}$$
B
$${1 \over c}{\left( {{{2m} \over E}} \right)^{{1 \over 2}}}$$
C
$${1 \over c}{\left( {{E \over {2m}}} \right)^{{1 \over 2}}}$$
D
$${\left( {{E \over {2m}}} \right)^{{1 \over 2}}}$$
NEET Subjects