Electricity
Current Electricity
MCQ (Single Correct Answer)
Moving Charges and Magnetism
MCQ (Single Correct Answer)
Magnetism and Matter
MCQ (Single Correct Answer)
Electromagnetic Induction
MCQ (Single Correct Answer)
Electromagnetic Waves
MCQ (Single Correct Answer)
Modern Physics
Semiconductor Electronics
MCQ (Single Correct Answer)
1
NEET 2018
MCQ (Single Correct Answer)
+4
-1
An electron of mass m with an initial velocity $$\overrightarrow v = {v_0}\widehat i$$ (v0 > 0) enters an electric field $$\overrightarrow E = - {\overrightarrow E _0}\widehat i$$ (E0 = constant > 0) at t = 0. If $$\lambda $$0 is its de-Broglie wavelength initially, then its de- Broglie wavelength at time t is
A
$${{{\lambda _0}} \over {\left( {1 + {{e{E_0}} \over {m{v_0}}}t} \right)}}$$
B
$${{\lambda _0}\left( {1 + {{e{E_0}} \over {m{v_0}}}t} \right)}$$
C
$$\lambda $$0t
D
$$\lambda $$0
2
NEET 2018
MCQ (Single Correct Answer)
+4
-1
When the light of frequency 2$${\upsilon _0}$$ (where $${\upsilon _0}$$ is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v1 . When the frequency of the incident radiation is increased to 5$${\upsilon _0}$$ , the maximum velocity of electrons emitted from the same plate is v2 . The ratio of v1 to v2 is
A
1 : 2
B
1 : 4
C
4 : 1
D
2 : 1
3
NEET 2017
MCQ (Single Correct Answer)
+4
-1
The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is
A
$${h \over {\sqrt {3mkT} }}$$
B
$${{2h} \over {\sqrt 3 mkT}}$$
C
$${{2h} \over {\sqrt {mkT} }}$$
D
$${h \over {\sqrt {mkT} }}$$
4
NEET 2016 Phase 2
MCQ (Single Correct Answer)
+4
-1
Electrons of mass m with de-Broglie wavelength $$\lambda $$ fall on the target in an X-ray tube. The cutoff wavelength ($$\lambda $$0) of the emitted X-ray is
A
$$\lambda $$0 = $${{2mc{\lambda ^2}} \over h}$$
B
$${\lambda _0} = {{2h} \over {mc}}$$
C
$${\lambda _0} = {{2{m^2}{c^2}{\lambda ^3}} \over {{h^2}}}$$
D
$${\lambda _0} = \lambda $$
NEET Subjects