Electromagnetism
Current Electricity
MCQ (Single Correct Answer)
Moving Charges and Magnetism
MCQ (Single Correct Answer)
Magnetism and Matter
MCQ (Single Correct Answer)
Electromagnetic Induction
MCQ (Single Correct Answer)
Alternating Current
MCQ (Single Correct Answer)
Electromagnetic Waves
MCQ (Single Correct Answer)
Modern Physics
Dual Nature of Radiation
MCQ (Single Correct Answer)
Semiconductor Devices and Logic Gates
MCQ (Single Correct Answer)
Communication Systems
MCQ (Single Correct Answer)
1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

A conducting circular loop is placed in a uniform magnetic field $$\mathrm{B}=0.125 \mathrm{~T}$$ with its plane perpendicular to the loop. If the radius of the loop is made to shrink at a constant rate of $$2 \mathrm{~mm} \mathrm{~s}^{-1}$$, then the induced emf when the radius is $$4 \mathrm{~cm}$$ is

A
$$0.52 \pi \mu V$$
B
$$20 \pi \mu V$$
C
$$\frac{2}{3}\mu V$$
D
$$\frac{3 \pi}{2} \mu V$$
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

A transformer of $$100 \%$$ efficiency has 200 turns in the primary and 40000 turns in the secondary. It is connected to a $$220 \mathrm{~V}$$ main supply and secondary feeds to a $$100 \mathrm{~K} \Omega$$ resistance. The potential difference per turn is

A
11 V
B
18 V
C
25 V
D
1.1 V
3
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

The current in a coil changes steadily from $$3 \mathrm{~A}$$ to $$5 \mathrm{~A}$$ in $$0.2 \mathrm{~s}$$ when an emf of $$2 \mu \mathrm{V}$$ is induced in it. The self-inductance of the coil is

A
0.2 mH
B
20 $$\mu H$$
C
2 $$\mu H$$
D
0.2 $$\mu H$$
4
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

The magnetic flux linked with a coil is given by the equation: $$\phi=8 t^2+t+10$$. The e.m.f. induced in the coil in the $$3^{\text {rd }}$$ second will be

A
49 V
B
33 V
C
16 V
D
20 V
COMEDK Subjects