Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$x\left[ n \right] = 0;\,n < - 1,\,n > 0,\,x\left[ { - 1} \right] = - 1,\,x\left[ 0 \right]$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2$$ is the input and
$$y\left[ n \right] = 0;\,n < - 1,\,n > 2,\,y\left[ { - 1} \right] = - 1,\, = y\left[ 1 \right],\,y\left[ 0 \right] = 3,\,y\left[ 2 \right]$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =- 2$$ is the output of a discrete-time $$LTI$$ system. The system impulse response $$h\left[ n \right]$$ will be
A
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < 0,\,\,n > 2, \cr & h\left[ 0 \right] = 1,\,h\left[ 1 \right] = h\left[ 2 \right] = - 1 \cr} $$
B
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < - 1,\,\,n > 1, \cr & h\left[ { - 1} \right] = 1,\,h\left[ 0 \right] = h\left[ 1 \right] = 2 \cr} $$
C
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < 0,\,\,n \ge 3,\,h\left[ 0 \right] = - 1, \cr & h\left[ 1 \right] = 2,\,h\left[ 2 \right] = 1 \cr} $$
D
$$\eqalign{ & h\left[ n \right] = 0;\,\,n < - 2,\,\,n > 1,\, \cr & h\left[ { - 2} \right] = h\left[ 1 \right] = - 2,\,h\left[ { - 1} \right] = - h\left[ 0 \right] = 3 \cr} $$
2
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
$$y\left[ n \right]$$ denotes the output and $$x\left[ n \right]$$ denotes the input of a discrete-time system given by the difference equation $$y\left[ n \right] - 0.8y\left[ {n - 1} \right] = x\left[ n \right] + 1.25\,x\left[ {n + 1} \right].$$ Its right-sided impulse response is
A
causal
B
unbounded
C
periodic
D
non-negative
3
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
A discrete real all pass system has a pole at $$z = 2\angle {30^ \circ };\,$$ it, therefore,
A
also has a pole at $$1/2\angle {30^ \circ }$$
B
has a constant phase response over the $$z$$-plane: $$\arg |H\left( z \right)| = const$$
C
is stable only if it is anticausal
D
has a constant phase response over the unit circle: $$\arg |H\left( {{e^{j\Omega }}} \right)| = const$$
4
GATE EE 2004
MCQ (Single Correct Answer)
+2
-0.6
In the system shown in Fig. the input $$x\left( t \right) = \sin t.$$ In the steady-state, the response $$y(t)$$ will be GATE EE 2004 Signals and Systems - Linear Time Invariant Systems Question 26 English
A
$${1 \over {\sqrt 2 }}\,\sin \left( {t - {{45}^ \circ }} \right)$$
B
$${1 \over {\sqrt 2 }}\,\sin \left( {t + {{45}^ \circ }} \right)$$
C
$$\sin \left( {t - {{45}^ \circ }} \right)$$
D
$$\sin \left( {t + {{45}^ \circ }} \right)$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement