1
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution to the differential equation $${d \over {dt}}x\left( t \right) + 3x\left( t \right) = 0,\,\,x\left( 0 \right) = 2?$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The solution of the differential equation $${k^2}{{{d^2}y} \over {d\,{x^2}}} = y - {y_2}\,\,$$ under the boundary conditions (i) $$y = {y_1}$$ at $$x=0$$ and (ii) $$y = {y_2}$$ at $$x = \propto $$ where $$k$$, $${y_1}$$ and $${y_2}$$ are constant is
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
For the differential equation $${{{d^2}y} \over {d{x^2}}} + {k^2}y = 0,$$ the boundary conditions are
(i) $$y=0$$ for $$x=0$$ and
(ii) $$y=0$$ for $$x=a$$
The form of non-zero solution of $$y$$ (where $$m$$ varies over all integrals ) are
(i) $$y=0$$ for $$x=0$$ and
(ii) $$y=0$$ for $$x=a$$
The form of non-zero solution of $$y$$ (where $$m$$ varies over all integrals ) are
4
GATE ECE 2001
Subjective
+2
-0
Solve the differential equation $${{{d^2}y} \over {d{x^2}}} + y = x\,\,$$ with the following conditions $$(i)$$ at $$x=0, y=1$$ $$(ii)$$ at $$x=0, $$ $${y^1} = 1$$
Questions Asked from Marks 2
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics