Control Systems
Signal Flow Graph and Block Diagram
Marks 1Marks 2Marks 5
Basic of Control Systems
Marks 1Marks 2
Frequency Response Analysis
Marks 1Marks 2Marks 5Marks 8Marks 10
Root Locus Diagram
Marks 1Marks 2
State Space Analysis
Marks 1Marks 2Marks 5Marks 10
1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The zero, input response of a system given by the state space equation $$$\left[ {{{\mathop {{x_1}}\limits^ \bullet } \over {\mathop {{x_2}}\limits^ \bullet }}} \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]and\left[ {\matrix{ {{x_1}} & {\left( 0 \right)} \cr {{x_2}} & {\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right]is$$$
A
$$\left[ {\matrix{ {t{e^t}} \cr t \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} \cr t \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^t}} \cr {t{e^t}} \cr } } \right]$$
D
$$\left[ {\matrix{ t \cr {t{e^t}} \cr } } \right]$$
2
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
For the system described by the state equation $$$\mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr {0.5} & 1 & 2 \cr } } \right]x + \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]u.$$$


If the control signal u is given by u=(-0.5-3-5)x+v, then the eigen values of the closed loop system will be

A
0, -1, -2
B
0, -1, -3
C
-1, -1, -2
D
0, -1, -1
3
GATE ECE 1997
MCQ (Single Correct Answer)
+2
-0.6
A certain linear time invariant system has the state and the output equations given below $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & { - 1} \cr 0 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u$$$ $$$y = \left[ {\matrix{ 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right], if$$$ $${x_1}\left( 0 \right) =1 ,{x_2}\left( 0 \right) = - 1,$$ $$u\left( 0 \right) = 0,$$ then $${{dy} \over {dt}}{|_{t = 0}}$$ is
A
1
B
-1
C
0
D
None of the above
4
GATE ECE 1992
MCQ (More than One Correct Answer)
+2
-0
A linear time-invariant system is described by the state variable model $$$\left[ {\matrix{ {{{\mathop x\limits^ \bullet }_1}} \cr {{{\mathop x\limits^ \bullet }_2}} \cr } } \right] = \left[ {\matrix{ { - 1} & 0 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u.$$$ $$$Y = \left[ {\matrix{ 1 & 2 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$$
A
The system is completely controllable
B
The system is not completely controllable
C
The system is completely observable
D
The system is not completely observable
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics