Network Theory
Network Elements
Marks 1Marks 2Marks 5
Network Theorems
Marks 1Marks 2Marks 5
Sinusoidal Steady State Response
Marks 1Marks 2Marks 5Marks 8
Network Graphs
Marks 1Marks 2
State Equations For Networks
Marks 5
1
GATE ECE 2016 Set 3
Numerical
+1
-0
The z-parameter matrix for the two-port network shown is $$$\left[ {\matrix{ {2\,j\,\omega } & {j\,\omega } \cr {j\,\omega } & {3\, + \,2\,j\,\omega } \cr } } \right]$$$ Where the entries are in $$\Omega $$. Suppose $$\,{Z_b}\,\left( {j\,\omega } \right) = {R_b} + j\,\omega $$ GATE ECE 2016 Set 3 Network Theory - Two Port Networks Question 34 English Then the value of $${R_b}$$ (in $$\Omega $$) equals _______________________3
Your input ____
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The 2-port admittance matrix of the circuit shown is given by GATE ECE 2015 Set 2 Network Theory - Two Port Networks Question 35 English
A
$$\left[ {\matrix{ {0.3} & { - 0.2} \cr { - 0.2} & {0.3} \cr } } \right]$$
B
$$\left[ {\matrix{ {15} & { 5} \cr { 5} & {15} \cr } } \right]$$
C
$$\left[ {\matrix{ {3.33} & { 5} \cr { 5} & {3.33} \cr } } \right]$$
D
$$\left[ {\matrix{ {0.3} & { 0.4} \cr { 0.4} & {0.3} \cr } } \right]$$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
For the two-port network shown below, the short-circuit admittance parameter matrix is GATE ECE 2010 Network Theory - Two Port Networks Question 51 English
A
$$\begin{bmatrix}4&-2\\-2&4\end{bmatrix}S$$
B
$$\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}S$$
C
$$\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}S$$
D
$$\begin{bmatrix}4&2\\2&4\end{bmatrix}S$$
4
GATE ECE 2009
MCQ (Single Correct Answer)
+1
-0.3
If the transfer function of the following network is $$\,{{{V_0}(s)} \over {{V_i}(s)}} = {1 \over {2\, + \,sCR}}$$ GATE ECE 2009 Network Theory - Two Port Networks Question 36 English

The value of the load resistance $${R_L}$$ is

A
R/4
B
R/2
C
R
D
2R
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics