Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2015 Set 2
Numerical
+2
-0
The volume enclosed by the surface $$f\left( {x,y} \right) = {e^x}$$ over the triangle bounded by the lines $$x=y;$$ $$x=0;$$ $$y=1$$ in the $$xy$$ plane is ________.
Your input ____
2
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The minimum value of the function $$f\left( x \right) = {x^3} - 3{x^2} - 24x + 100$$ in the interval $$\left[ { - 3,3} \right]$$ is
A
$$20$$
B
$$28$$
C
$$16$$
D
$$32$$
3
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
To evaluate the double integral $$\int\limits_0^8 {\left( {\int\limits_{y/2}^{\left( {y/2} \right) + 1} {\left( {{{2x - y} \over 2}} \right)dx} } \right)dy,\,\,} $$ we make the substitution $$u = \left( {{{2x - y} \over 2}} \right)$$ and $$v = {y \over 2}.$$ The integral will reduce to
A
$$\int\limits_0^4 {\left( {\int\limits_0^2 {2udu} } \right)dv} $$
B
$$\int\limits_0^4 {\left( {\int\limits_0^1 {2udu} } \right)dv} $$
C
$$\int\limits_0^4 {\left( {\int\limits_0^1 {udu} } \right)dv} $$
D
$$\int\limits_0^4 {\left( {\int\limits_0^{21} {2udu} } \right)dv} $$
4
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The maximum value of $$f\left( x \right) = {x^3} - 9{x^2} + 24x + 5$$ in the interval $$\left[ {1,6} \right]$$ is
A
$$21$$
B
$$25$$
C
$$41$$
D
$$46$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement