Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2014 Set 2
Numerical
+2
-0
The value of the integral $$\int\limits_{ - \infty }^\infty {\sin \,{c^2}} $$ (5t) dt is
Your input ____
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The Fourier transform of a signal h(t) is $$H(j\omega )$$ =(2 cos $$\omega $$) (sin 2$$\omega $$) / $$\omega $$. The value of h(0) is
A
1/4
B
1/2
C
1
D
2
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The signal x(t) is described by $$x\left( t \right) = \left\{ {\matrix{ {1\,\,\,for\,\, - 1 \le t \le + 1} \cr {0\,\,\,\,\,\,\,\,\,\,\,\,\,\,otherwise} \cr } } \right.$$

Two of the angular frequencies at which its Fourier transform becomes zero are

A
$$\pi ,\,2\pi $$
B
$$0.5\,\pi ,\,1.5\,\pi $$
C
$$0,\,\pi $$
D
$$2\,\pi ,\,2.5\,\pi $$
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
For a signal x(t) the Fourier transform is X(f). Then the inverse Fourier transform of X(3f+2) is given by
A
$${1 \over 2}\,x\left( {{t \over 2}} \right){e^{j3\pi t}}$$
B
$${1 \over 3}\,x\left( {{t \over 3}} \right){e^{ - j4\pi t/3}}$$
C
$$3\,x(3t){e^{ - j4\pi t}}$$
D
$$x(3t + 2)$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics