Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
1
GATE ECE 2015 Set 3
Numerical
+1
-0
The value of $$\sum\limits_{n = 0}^\infty {n{{\left( {{1 \over 2}} \right)}^n}\,\,} $$ is _______.
Your input ____
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+1
-0.3
A function $$f\left( x \right) = 1 - {x^2} + {x^3}\,\,$$ is defined in the closed interval $$\left[ { - 1,1} \right].$$ The value of $$x,$$ in the open interval $$(-1,1)$$ for which the mean value theorem is satisfied, is
A
$$ - {1 \over 2}$$
B
$$ - {1 \over 3}$$
C
$$ {1 \over 3}$$
D
$$ {1 \over 2}$$
3
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
The series $$\sum\limits_{n = 0}^\infty {{1 \over {n!}}\,} $$ converges to
A
$$2$$ $$ln$$ $$2$$
B
$${\sqrt 2 }$$
C
$$2$$
D
$$e$$
4
GATE ECE 2014 Set 3
Numerical
+1
-0
The maximum value of the function $$\,f\left( x \right) = \ln \left( {1 + x} \right) - x$$ (where $$x > - 1$$ ) occurs at $$x=$$________.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics