Signals and Systems
1
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a discrete time LTI system is given by
$$H\left( z \right) = {{2 - {3 \over 4}{z^{ - 1}}} \over {1 - {3 \over 4}{z^{ - 1}} + {1 \over 8}{z^{ - 2}}}}$$
$$H\left( z \right) = {{2 - {3 \over 4}{z^{ - 1}}} \over {1 - {3 \over 4}{z^{ - 1}} + {1 \over 8}{z^{ - 2}}}}$$
Consider the following statements:
S1: The system is stable and causal for $$ROC:\,\,\,\left| z \right| > \,1/2$$
S2: The system is stable but not causal for $$ROC:\,\,\,\left| z \right| < \,1/4$$
S3: The system is neither stable nor causal for $$ROC:\,\,1/4\, < \,\left| z \right| < \,{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$$
Which one of the following statements is valid?
2
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A discrete time linear shift - invariant system has an impulse response $$h\left[ n \right]$$ with $$h\left[ 0 \right]$$ $$ = 1,\,\,h\left[ 1 \right]\,\, = - 1,\,\,h\left[ 2 \right]\,\, = \,2$$, and zero otherwise. The system is given an input sequence $$x\left[ n \right]$$ with $$x\left[ 0 \right]$$ $$ = \,x\left[ 2 \right]\, = \,1,$$ and zero otherwise. The number of nonzero samples in the output sequence $$y\left[ n \right]$$, and the value of $$y\left[ 2 \right]$$ are, respectively
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
A system with input $$x\left( n \right)$$ and output $$y\left( n \right)$$ is given as $$y\left( n \right)$$ $$ = \left( {\sin {5 \over 6}\,\pi \,n} \right)x\left( n \right).$$ The system is
4
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A causal LTI system is described by the difference equation $$2y\left[ n \right] = ay\left[ {n - 2} \right] - 2x\left[ n \right] + \beta x\left[ {n - 1} \right].$$ The system is stable only if
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics