Signals and Systems
1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The system under consideration is an RC low -pass filter (RC-LPF) with R = 1.0 $$k\Omega $$ and C = 1.0 $$\mu F$$.
Let H(t) denote the frequency response of the RC-LPF. Let $${f_1}$$ be the highest frequency such that $$0 \le \left| f \right| \le {f_1},{{\left| {H({f_1})} \right|} \over {H(0)}} \ge 0.95$$. Then $${f_1}$$ (in Hz) is
2
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
In Fig. m(t) = $$ = {{2\sin 2\pi t} \over t}$$, $$s(t) = \cos \,200\pi t\,\,andn(t) = {{\sin 199\pi t} \over t}$$.
The output y(t) will be

3
GATE ECE 2000
MCQ (Single Correct Answer)
+2
-0.6
A system has a phase response given by $$\phi \,(\omega )$$ where $$\omega $$ is the angular frequency. The phase delay and group delay at $$\omega $$ = $${\omega _0}$$ are respectively given by
4
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
The input to a matched filter is given by $$s(t) = \left\{ {\matrix{
{10\sin (2\pi \times {{10}^6}t),} & {0 < \left| t \right| < {{10}^{ - 4}}\sec } \cr
0 & {Otherwise} \cr
} } \right.$$
The peak amplitude of the filter output is
Questions Asked from Marks 2
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics