Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
The system represented by the input-output relationship $$y\left(t\right)=\int_{-\infty}^{5t}x\left(\tau\right)d\tau$$, t > 0 is
A
Linear and causal
B
Linear but not causal
C
Causal but not linear
D
Neither linear nor causal
2
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
For the system $$\frac2{\left(s+1\right)}$$, the approximate time taken for a step response to reach 98% of its final value is
A
1 s
B
2 s
C
4 s
D
8 s
3
GATE EE 2009
MCQ (Single Correct Answer)
+1
-0.3
A linear Time Invariant system with an impulse response $$h(t)$$ produces output $$y(t)$$ when input $$x(t)$$ is applied. When the input $$x\left( {t - \tau } \right)$$ is applied to a system with response $$h\left( {t - \tau } \right)$$, the output will be
A
$$y\left( t \right)$$
B
$$y\left( {2\left( {t - \tau } \right)} \right)$$
C
$$y\left( {t - \tau } \right)$$
D
$$y\left( {t - 2\tau } \right)$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of a causal linear time-invariant system is given as $$h(t)$$. Now consider the following two statements:

Statement-$$\left( {\rm I} \right)$$: Principle of superposition holds
Statement-$$\left( {\rm II} \right)$$: $$h\left( t \right) = 0$$ for $$t < 0$$

Which one of the following statements is correct?

A
Statement $$\left( {\rm I} \right)$$ is correct and Statement $$\left( {\rm II} \right)$$ is wrong
B
Statement $$\left( {\rm II} \right)$$ is correct and Statement $$\left( {\rm I} \right)$$ is wrong
C
Both Statement $$\left( {\rm I} \right)$$ and Statement $$\left( {\rm II} \right)$$ are wrong
D
Both Statement $$\left( {\rm I} \right)$$ and Statement $$\left( {\rm II} \right)$$ are correct
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement