Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an $$LTI$$ system is given by $$$\left( {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right) = \left( {\matrix{ 0 & {{a_1}} & 0 \cr 0 & 0 & {{a_2}} \cr {{a_3}} & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right) + \left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)u,$$$ $$$y = \left( {\matrix{ 1 & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right)$$$

where $$y$$ is the output and $$u$$ is the input. The system is controllable for

A
$${a_1} \ne 0,\,\,{a_2} = 0,\,\,{a_3} \ne 0$$
B
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} \ne 0$$
C
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
D
$${a_1} \ne 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
The system $$\mathop X\limits^ \bullet = AX + BU$$ with $$A = \left[ {\matrix{ { - 1} & 2 \cr 0 & 2 \cr } } \right],$$ $$B = \left[ {\matrix{ 0 \cr 1 \cr } } \right]$$ is
A
stable and controllable
B
stable but uncontrollable
C
unstable but controllable
D
unstable and uncontrollable
3
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The system transfer function is

A
$${{s + 2} \over {{s^2} + 5s - 6}}$$
B
$${{s + 3} \over {{s^2} + 5s + 6}}$$
C
$${{2s + 5} \over {{s^2} + 5s + 6}}$$
D
$${{2s - 5} \over {{s^2} + 5s + 6}}$$
4
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The state $$-$$ transition matrix of the above system is

A
$$\left( {\matrix{ {{e^{ - 3t}}} & 0 \cr {{e^{ - 2t}} + {e^{ - 3t}}} & {{e^{ - 2t}}} \cr } } \right)$$
B
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
C
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} + {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
D
$$\left( {\matrix{ {{e^{3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement