Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The state space equation of a system is described by $$\mathop X\limits^ \bullet = AX + BU,\,\,Y = Cx$$ where $$X$$ is state vector, $$U$$ is input, $$Y$$ is output and $$$A = \left( {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right)\,\,B = \left( {\matrix{ 0 \cr 1 \cr } } \right)\,\,C = \left[ {\matrix{ 1 & 0 \cr } } \right]$$$

A unity feedback is provided to the above system $$G(s)$$ to make it a closed loop system as shown in figure.

GATE EE 2008 Control Systems - State Variable Analysis Question 21 English

For a unit step input $$r(t),$$ the steady state error in the input will be

A
$$0$$
B
$$1$$
C
$$2$$
D
$$\infty $$
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition matrix

A
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {1 - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
B
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - t}}} \cr } } \right)$$
C
$$\left( {\matrix{ 1 & {{1 \over 3}\left( {{e^{ - t}} - {e^{ - 3t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
D
$$\left( {\matrix{ 1 & {\left( {1 - {e^{ - t}}} \right)} \cr 0 & {{e^{ - 3t}}} \cr } } \right)$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has

The state transition equation

A
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {{e^{ - t}}} \cr } } \right)$$
B
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
C
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {3{e^{ - 3t}}} \cr } } \right)$$
D
$$X\left( t \right) = \left( {\matrix{ {t - {e^{ - 3t}}} \cr {{e^{ - t}}} \cr } } \right)$$
4
GATE EE 2004
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of a linear autonomous system is, $$\mathop X\limits^ \bullet = AX,\,\,$$ where $$X$$ is the two dimensional state vector and $$A$$ is the system matrix given by $$A = \left[ {\matrix{ 0 & 2 \cr 2 & 0 \cr } } \right].$$ The roots of the characteristic equation are
A
$$-2$$ and $$+2$$
B
$$-j2$$ and $$+j2$$
C
$$-2$$ and $$-2$$
D
$$+2$$ and $$+2$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement