Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2000
MCQ (Single Correct Answer)
+1
-0.3
The solution to the recurrence equation
$$T\left( {{2^k}} \right)$$ $$ = 3T\left( {{2^{k - 1}}} \right) + 1$$,
$$T\left( 1 \right) = 1$$ is:
A
$${{2^k}}$$
B
$$\left( {{3^{k + 1}} - 1} \right)/2$$
C
$${3^{\log {K \over 2}}}$$
D
$${2^{\log {K \over 3}}}$$
2
GATE CSE 1999
MCQ (Single Correct Answer)
+1
-0.3
The number of binary strings of $$n$$ zeros and $$k$$ ones such that no two ones are adjacent is:
A
$${}^{n + 1}{C_k}$$
B
$${}^n{C_k}$$
C
$${}^n{C_{k + 1}}$$
D
None of the above
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization